
Software Testing in Context

Graham G. Thomason

Appendix to the Thesis “The Design and

Construction of a State Machine System

that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

Summary

This paper presents a broad approach to testing – an approach that theoretically could be

adapted and applied to a typical software project. It is a condensation of what appear to be the

best state-of-the-art practical testing techniques. We cover module testing, integration testing,

and system testing; white-box testing and black-box testing; automated test execution and

automated test generation.

The purpose of the paper is to situate state-based-testing in a broad testing context.

A word of caution is in place. Owing to the variety of techniques presented, one would be

unwise to attempt them all on any one project, as this could easily lead to an overload of

tooling and lack of focus on key testing issues for the particular project in hand.

© Graham G. Thomason 2003-2004 iii

Contents

1. A general testing approach ... 1

1.1 Code checking ... 2

1.2 Module testing... 3

1.3 Integration testing.. 7

1.4 System testing ... 8

2. Non-functional testing .. 9

3. Automated test execution ... 10

4. Automated test generation .. 17

4.1 State-based testing ... 17

4.2 Decision tables .. 19

4.3 Cause-effect graphing (CEG) .. 27

4.4 Syntax testing .. 36

4.5 Orthogonal arrays .. 42

4.6 Other model-based testing ... 42

4.7 Random testing ... 42

4.8 Summary of automated test generation ... 42

5. Abbreviations ... 43

5.1 Testing-related abbreviations .. 43

5.2 Other abbreviations used ... 43

6. References .. 44

© Graham G. Thomason 2003-2004 1

1. A general testing approach

The V-model for the software development life-cycle is well-known. The testing phases of

this model are shown in Figure 1.

Figure 1. V-model and testing

The V model identifies various kinds of testing activity, and each has its own emphasis. We

consider the aims of and techniques for each form of testing, starting at the bottom of the V

model and working up the right-hand side:

 Code checking in general: Static analysis can reveal bad coding style and possible

pitfalls. Dynamic techniques can check for memory leaks and can provide code

coverage, such as statement coverage, described in more detail later.

 Module testing: The question to be answered is: Does the implementation correspond

to the design? Modules are usually single functions, or a small number of tightly

coupled functions designed against a single specification. Exercise code statements

and branches. Use code instrumentation to check for coverage of these. Also include

a memory leak check in the tests. Module testing is typically white-box testing - we

have a knowledge of the code structure and use it to guide us in designing test cases,

and we have detailed controllability and observability of the module.

 Integration testing: The question to be answered is: Is the design internally

consistent? Exercise interfaces between modules. Measure call-pair coverage (i.e.

every call and every return from it). Integration testing is typically black-box testing -

some modules may even be only available as object code, and the only way we can

test the integrated system is via the published interfaces.

 System testing. The question to be answered is: Does the system satisfy the project

requirements? This will typically be a black-box testing activity, since the

requirements do not normally specify internal controllability and observability, but

Coding

Requirements

System

design

Module

design

System

test

Integration

test

Module

test

tests

tests

tests

Code

checking

checks

2 © Graham G. Thomason 2003-2004

rather the operations and their outputs which to which the end-user has access. For

some kinds of system, a part of system testing will be volume testing. For example, a

set-top box will need to be tested with large quantities of MPEG streams, and a

Global Positioning System will need to be tested with large quantities of sampled

radio-front-end (intermediate frequency) satellite data.

Tests suites are best structured, where possible, as a set of individually self-sufficient test

cases, defining their own pass/fail criterion (rather than e.g. comparing output with that of

previous runs). Some tests will address robustness under error situations.

For each form of testing, it may be advantageous not to test against the specification directly,

but to produce a test specification, and test against that. In this way, we admit that we are not

testing everything (or every combination of things), but we do make explicit what

combinations of things we are testing.

Figure 2. The Principle of a Test Specification

In addition to functional testing, there is non-functional testing, which is largely a form of

system testing. This is considered in chapter 2. Further chapters address test automation.

We now consider the aims of each form of testing in a little more detail.

1.1 Code checking

At the bottom of the V model is coding. As code is produced (or perhaps upgraded from

prototype to production status), it should be subjected to some static analysis. This could be:

 Automated static analysis, e.g. for C and C++, by the [QAC] product. This analysis

will reveal poor coding style and many potential bugs. It also provides code

complexity metrics. Experience shows that complex code in terms of its branching

and looping structure (having a high cyclomatic complexity metric) is much more

liable to have bugs than one which is less complex.

 Code reviews by peers. This is often regarded as being as valuable as testing.

Code may also be subject to dynamic analysis. The following can be used when testing:

 Memory leak and array bounds checking (using e.g. [Purify]).

 Code instrumentation for statement or branch coverage checking.

 Data flow testing. A tool tracks the use of variables, and reports on suspect use.

Functional

Specification

Test

Specification

Test

Scripts

© Graham G. Thomason 2003-2004 3

We discuss code instrumentation and data flow testing in little more detail in section 1.2.

1.2 Module testing

Modules are tested against a module specification, and we aim to cover all statements or all

branches in our tests. There is a saying that if in your tests you haven't executed any lines of

code, you might as well rip them out of the product, because they are a good as defective.

Statement coverage is essential, branch coverage is desirable, but there are various levels of

detail of branch coverage, which we briefly discuss. Then we give some advice on how

module tests could be designed.

Code coverage is obtained by instrumenting the code, so that when it is executed, apart from

executing its own function, it also produces a log or trace of what code was executed.

Example (from [McCabe])

The program is regarded as segments (between potential branches or function calls), which

are numbered by a node number. The node numbers are recorded on execution.

Uninstrumented

 if (Getstate() > 0) {return Fred(); }

Instrumented

 if ((_mcrepco2(1662,1663,(GetState() > 0) != 0)))

 {return Fred();}

The call to _mcrepco2 contains the evaluated condition in the third argument, so that the

relevant node number (the first or second argument) can be logged according to whether it is

true or false, and so the resultant boolean value can be returned into the if statement.

A table is then produced with coverage results, e.g.

 Module Name # Branch # Covered % Covered

 LsdSyncDec::GetResource 8 5 62.5

 LsdSyncDec::OpenSession 11 5 45.5

Table 1. Example of a coverage table

Before we discuss forms of statement and branch coverage, we must discuss a factor that

interferes with measurement of some of them. C and many other languages use short-circuit

evaluation of boolean expressions. Short-circuit evaluation skips evaluating operands where

they do not contribute to the expression result. The problem that arises is

 Not all combinations of boolean terms are relevant - but in the context of short-circuit

evaluation we know that, and do not count them against us in terms of the coverage

percentage.

 Boolean operands could be function calls that may have side effects. So they cannot

safely be evaluated in instrumented code if they would not be evaluated under normal

uninstrumented circumstances. So we cannot measure some forms of coverage.

4 © Graham G. Thomason 2003-2004

In the examples below, our typical condition is

if (x==0 || y==0 ||z==0) ...

(For simplicity we do not call functions here).

The naming for code coverage is not universally standardised; we take frequently used names.

The most commonly met forms of coverage that one could attempt to cover are:

1. Statement coverage. This is achieved if the if statement is executed at all.

2. BDC: Branch decision coverage

Full coverage is obtained by any expressions that make the entire boolean expression

true and false.

3. BCC: Branch condition coverage. The individual terms (not the variables) in the

boolean expression must be made true and false at some time. So x==0 must be true

and must be false on occasions, as must y==0 and z==0. But we are not concerned

about combinations, or even whether the branch is taken.

4. BDC/BCC: The union of BDC and BCC.

5. MC/DC: Modified condition decision coverage. Each boolean operand must

individually affect the outcome of the decision. Four combinations would suffice for

values of x, y, and z (using t=true, f=false, x=don't care): (f,f,f), (t,f,f), (f,t,f), (f,f,t). In

general this requires n+1 tests for n boolean operands. Under short-circuit evaluation,

this form of coverage can be measured on the understanding that it really is done in

the context of short circuit evaluation. So (f,f,f), (t,x,x), (f,t,x), (f,f,t) gives full

coverage. However, with all x=t in practice, say, it would not necessarily give full

coverage if the terms in the expression were re-ordered, though with all x=f it would.

MC/DC coverage in the short-circuit context is called masking-MC/DC and in the

long-circuit context it is called unique cause MC/DC.

6. BCCC: Branch condition combination coverage. This requires that the boolean

operands take on all values in all combinations, i.e. (f,f,f), (f,f,t), (f,t,f), (f,t,t), (t,f,f),

(t,f,t), (t,t,f), (t,t,t). In general this involves 2
n
 tests for n boolean operands. Under

short-circuit evaluation, this form of coverage can be sensitized for, but not all

measured.

7. LCSAJ: Linear Code Sequence And Jump coverage. This may appear to be like

branch testing, but it differs in that it requires that loops are executed in ways that

branches do not require.

8. Path coverage. For full coverage, all paths through the program are taken. The

enormous number of paths in a typical module makes this impracticable.

© Graham G. Thomason 2003-2004 5

In practice BDC is often chosen where testing time is very limited. BCC is very weak on its

own, as it does not force branch decision. BDC/BCC appears to be offered by many

inexpensive tools. MC/DC is potentially very powerful (it exposes the weakness of the

above-mentioned coverage criteria) but takes quite some work (but so does BDC/BCC).

MC/DC is required as part of the US Department of Defense standard DO-178B. BCCC is

excessive in most cases, and impracticable with short-circuiting languages such as C. LCSAJ

is powerful and should be feasible in many cases. Not all are supported by all tools.

Data flow coverage

This form of coverage is not based on statements, but on data flow as variables are Defined

(created, initialized, or written to in an assignment), Used (as a Predicate in a condition, or in

a Calculation in the right hand side of an assignment), and Killed (e.g. by going out of scope).

A coverage requirement might be that every path from Definition to Use is exercised. Many

more paths are useful. Anomalies are looked for such as DK (why define and kill without

using?) or KU (definitely a bug - an undefined value is being used). Reference: [Beizer, ch.5].

There are many other forms of coverage - see for example [BCS Sigist].

How should module tests be designed?

The module under test will often be isolation tested, where all modules it calls are stubbed.

Stubbing is replacing real modules by small modules with pre-cooked return values,

preferably controllably by the test script. This gives more control over the module than when

it is not stubbed.

Sometimes there is opportunity for automatic test generation, especially for state-based

testing, decision table testing and cause-effect graphing (discussed later). But often module

tests will be hand crafted. The tests will typically be matter of supplying various sets of

parameter values in a function call. Global data may also play a role. Parameter values should

be divided into equivalence classes, based on critical boundaries. Then ‘grazing’ values

should be taken in and just out of each equivalence class. For example, if an equivalence class

is the range -9..-4 (inclusive), test at least with values -10, -9, -4, -3. Correct error handling for

out-of-range values should be checked.

Specific points of attention for numerical systems

Calculation-intensive applications have the potential for many numerical errors. Points of

attention could be

 Finding all divisions in expressions and looking for possible sensitization of division

by zero

 Looking for overflow / underflow / sign flip - perhaps in mid-expression - (perhaps

detect it by assertion)

 Looking for int / unsigned / long int / unsigned long int / float / double / long double

mixes in expressions and review them (maybe static analysis can help).

 Looking for all subtractions in expressions, and anticipate insufficient precision. The

result of (large number)-(another similarly large number), e.g 123456789.12-

6 © Graham G. Thomason 2003-2004

123456789.13, producing a very small number, is subject to great loss of precision,

because much of the available precision was used up in storing the parts of the

numbers that were subtracted away.

 Subjecting the module to massive feeds of data (volume testing) around critical

expressions where it is claimed that dangerous values of variables cannot occur, with

dense assertions in the codes; also continue to look for values indicative of

overflow/underflow/sign flip (loss of precision due to subtraction might be hard to

detect by assertion). The data might be:

o random data

o artificial data representing unusual circumstances.

After the tests have been designed, scripted and run the, the coverage figures can be analysed,

and ways should be devised to sensitise for branches that were not taken. Occasionally, extra

test software (such as special stubbing) is required to do this, because the error condition

might be hard or impossible to sensitize from calling parameters alone.

Code coverage targets

What coverage targets should be set? Safety critical industries would require 100% MC/DC

coverage. A paper claiming the experimental effectiveness of MC/DC is [Dupuy]. However,

it does require considerably more effort than BDC/BCC, which are more commonly taken as

norms. It is sometimes infeasible to sensitize for coverage certain parts of code, especially

some error handing code, except by artificially forcing it.

© Graham G. Thomason 2003-2004 7

1.3 Integration testing

Integration testing is the testing of interfaces between modules. It is important, because if it is

not done, errors will occur in system testing which will be hard to diagnose, because it will

not be clear exactly what caused the failures. What may happen is that after the defective

statement was executed, no failure was yet caught and more statements were executed, and

memory blocks became overwritten, destroying evidence.

In integration tests, we do not attempt to reproduce the coverage of module testing. What we

do concentrate on is module-to-module interfacing and interaction. Potential causes of

integration errors in a system, and how to address them, are described in [Trew 99], covering:

 Incompatibilities between actual and formal parameter ranges.

 Test with boundary values.

 Errors in large scale state behaviour

 Reach all states. Make all transitions, perhaps all pairs of transitions

 Interpretation of parameter values, (e.g. in interpretation of units, of array offsets, in

enumerated values, a defect caused by a make file bug)

 Exercise all call pairs (tooling can give the call pair coverage)

 Parameter ordering. Parameters of the same type may be inadvertently exchanged

 Exercise all call pairs (tooling can give the call pair coverage)

 Dependencies on shared global data. Is the data used consistently? Is it always

initialised?

 Structured data-flow tests

or

 Volume test with high levels of activity, and check for integrity of the data

 Re-entrancy (direct recursion, indirect recursion).

 Visualisation tools will reveal it

 Race conditions

 (State-based) test under all preconditions.

 Ensure design (and code) employs a handshake

 Deadlock

 Rigorous design inspections

 Volume testing.

It is seen that exercising call pairs (client-server calls) and state-based testing can play an

important role, as does design/code inspection.

8 © Graham G. Thomason 2003-2004

1.4 System testing

System testing addresses the question of whether the system meets the customer's or project

manager's requirements. Even perfect module and integration testing, with 100% coverage

figures, will not protect against swathes of missing functionality. System testing is against

requirements and system level analysis documents, and obviously the approach is very

application specific. The use of a test specification (see Figure 2) is particularly useful here.

Many tests of a fully integrated system should be centred around the user - i.e. they should be

use cases.

Use cases

Use cases are part of UML. For the UML baseline, see [Catalysis, Ch. 4]. Use cases are

important in system testing, because, if well chosen, they exercise the software in the way it is

likely to be used in practice. Use cases are part of the [PHASST] approach in Philips, where

they are described as follows:

A use case describes the system's behaviour under various conditions as the system

responds to a request from its users. The system user, primary actor in use case

terminology, interacts with the system to achieve some goal. Each use case is a high

level description of the group of scenarios which may be triggered when a particular

set of conditions holds. It also includes a set of conditions that are valid when the

sequence of events associated with any of the scenarios in the set is completed.

© Graham G. Thomason 2003-2004 9

2. Non-functional testing

According to [Evans], reporting for the BCS SIGiST, functional areas are concerned with

what a product does, and non-functional areas are concerned with how well the product

behaves, including whether a product is enjoyable to use and perceived as trustworthy.

The list of non-functional testing techniques from [Evans] and [TestingStds] is as follows:

 Memory Management

 Performance

 Stress Procedure

 Reliability

 Security

 Interoperability

 Usability

 Portability

 Compatibility

 Maintainability

 Recovery

 Installability

 Configuration

 Recovery

 Disaster Recovery

 Conversion

The SIGiST is currently (2003) in the process of elaborating on these concepts. Each project

needs to review which of the above are applicable and how to address them in the light of its

own context of use.

10 © Graham G. Thomason 2003-2004

3. Automated test execution

The techniques described here apply across different levels of testing (module, integration,

system testing).

Testing should normally be automated where possible. Humans become weary of e.g.

repeatedly following written test instructions manually and checking output by eye. But even

a collection of diverse test programs can be difficult to manage. The best kind of test suite is

one in which

 All tests are called in a uniform way

 Every test calls the Implementation Under Test (IUT) and examines the IUT output

directly in the script.

 Every test defines its own pass/fail criterion

 Every test logs the test name or number and a pass or fail indication.

 If possible, the test script supplies values to stubbed modules, so that all relevant data

to a test comes from the test script, and is not distributed among special stub routines.

A basic way of automating test execution is illustrated in the following figure:

Figure 3. Automated test execution

There are two levels at which tests may be scripted:

 Hard-linking the test script to the IUT (Implementation Under Test). In this case, the

tests are direct function calls and tests on return values or on global data. A tool that

supports this kind of testing, and also gives coverage data, is Cantata [Cantata].

 Communicating with the IUT at the executable level. A good public domain tool for

communicating via Standard Input and Standard Output is DejaGnu. [DejaGnu].

Examples of Cantata and DejaGnu in use are now given.

Implementation

Under Test

Script

Test Report

Test Harness

Stub Stub

© Graham G. Thomason 2003-2004 11

Cantata

Cantata [Cantata] is a commercial test harness from IPL. It is suitable for C testing. There is a

sister product called Cantata++ which is suitable for C or C++ testing, which is more actively

promoted by the company. We show what is essentially involved in writing test cases in

Cantata.

In the example below, we are testing some function myfunc which takes an integer

parameter and returns an integer. This function calls another function, which is artificially

called stub, since it will be stubbed. The figure below shows a Cantata test script, including

stubs for the stubbed function, and instructions on how the stub is to be used on each call to it.

12 © Graham G. Thomason 2003-2004

Cantata test case example

Figure 4. Cantata test case example

The above example shows how function myfunc is tested. The test calls it with a parameter

value of 10, and expects a return value of 20. The function calls another function, stub,

which takes an integer parameter and returns a boolean. We stub this function by defining

pre-cooked return values (TRUE and FALSE) based on the calling parameter. The stub

definition allows us to check that calling parameter is 30 or 40 depending on which occasion

extern int myfunc(int); // IUT Declaration:

// a function taking and returning an int

int myfunc_P1; // Variable to hold the parameter value

int R_myfunc; // Variable to hold the return value

int E_R_myfunc; // Variable to hold the expected return value

/*** Test Case ***/

START_TEST(2);

myfunc_P1=10; // Initialize input parameter to myfunc

E_R_myfunc=20; // Set expected return value

EXECUTE_BY_REF("myfunc","stub#1;stub#1;stub#2");

R_myfunc=myfunc(myfunc_P1);

DONE();

CHECK_S_INT ("myfunc return", R_myfunc, E_R_myfunc);

END TEST();

int stub (int p1)

{

 int ret_val;

 START STUB ("stub1");

 switch (ACTION)())

 {

 case 1:

 CHECK_U_INT("p1",p1,30);

 retval=TRUE;

break;

 case 2:

 CHECK_U_INT("p1",p1,40);

 retval=FALSE;

break;

 default:

 ILLEGAL_ACTION();

break;

 }

END_STUB();

return (ret_val);

}

IUT called here

this part for stub#1

this part for stub#2

Stub definition example

© Graham G. Thomason 2003-2004 13

the stub was called. The test case itself specifies (by "stub#1;stub#1;stub#2") that

the stub is expected to be called 3 times, twice under case 1 conditions, then once under case

2 conditions. Under case 1 conditions we expect stub to be called with parameter value 30

and we return the pre-cooked value TRUE. Under case 2 conditions we expect stub to be

called with parameter value 40 and we return the pre-cooked value FALSE.

Any deviations from the expected values in the stub or in the return value of myfunc will

cause the test to report a failure.

The test report is of the following format:

PTE stands for Pre-Test Errors.

ANS stands for analysis check warning (the user can define a coverage measure as a check).

===

Test Script Checks Checks Checks Stubs Paths Assertions Status

 Errors Passed Failed Warning Failed Failed Failed

PTE 0 0 0 0 0 0 0 PASS

001 0 2 0 0 0 0 0 PASS

002 0 3 1 0 0 0 0 >>FAIL

ANS 0 2 0 1 0 0 0 PASS

--

Total 0 7 1 1 0 0 0 >>FAIL

===

14 © Graham G. Thomason 2003-2004

DejaGnu

DejaGnu [DejaGnu] is a layer on top of Expect [Expect-DL], which is a layer on top of TCL

(Tool Command Language) [TCL].

Figure 5. TCL, Expect and Deja Gnu

TCL and Expect can both be learnt from [Expect-DL]. There is also a detailed book on TCL,

[TCL], by its creator, John Ousterhout.

DejaGnu is well established on Unix Systems, and has been ported to Windows for use under

CYGWIN [CYGWIN]. A separate port of Expect to Windows (by Gordon Chaffee) also

exists. Both versions are pointed to by [Expect-Nist]. DejaGnu was used on the Philips G+4

set-top box platform project.

The essence of DejaGnu testing is to spawn the IUT (Implementation Under Test) and talk to

its via standard input and standard output. If the IUT does not respond within a certain time, a

timeout can catch this in DejaGnu.

Figure 6. DejaGnu

DejaGnu communicates with an executable program, the IUT or a program relaying I/O to

and from the IUT. So the IUT could be on the same computer as DejaGnu, or on another

machine. In the latter case, DejaGnu would spawn e.g. a serial line program or a socket

program communicating with the actual IUT. This scheme is suitable for testing the IUT on a

target board, providing the necessary glue code is in place. DejaGnu (being in essence

EXPECT) can spawn more than one program and control them independently if necessary.

TCL

Expect

DejaGnu

An interpretative scripting language,

designed for general use

Allows spawning of programs and

communication with them via standard I/O.

Also handles timeout.

Provides test suite management and

Pass/Fail logging

DejaGnu

script

Test report

IUT
send to standard input

expect (patterns) from

standard output;

also handle timeout

spawn the IUT

© Graham G. Thomason 2003-2004 15

A calc demonstration program is supplied with DejaGnu. It would not be confused with the

proper Unix calc program, because of its verbose commands, add and multiply. It has the

following behaviour:

Note that the program produces a prompt after any other output. Notice its bug!

Excerpts from a DejaGnu Test Script (as supplied - it could be improved)

The script first spawns the calc program. The calc program will then run internally,

without a window, obtaining input from Expect and writing output to Expect. The

% calc

calc: add 2 3

5

calc: add 1 2 3

Usage: add #1 #2

calc: multiply 3 4

12

calc: multiply 2 4

12

calc: quit

%

spawn calc

expect_after {

 -re "\[^\n\r]*$prompt$" {

 fail "$test (bad match)"

 }

 timeout {

 fail "$test (timeout) "

 }

}

set test add1

send "add 3 4\n"

expect {

 -re "7+.*$prompt$" {pass $test}

}

set test add2

send "add 1 2 3\n"

expect {

 -re "Usage: add #1 #2.*$prompt$" {pass $test}

}

set test multiply2

send "multiply 2 4\n"

expect {

 -re "8.*$prompt$" {pass $test}

}

16 © Graham G. Thomason 2003-2004

expect_after statements in the script are effectively extensions to expect statements

discussed below. Each test consists of setting a test name and sending an ASCII string to the

calc program. Then the script waits for (expects) output from calc, which may match the

regular expression defined. If this happens, the test is passed by a call to the DejaGnu pass

function. If the text from calc for any test does not match the expect regular expression,

but does match the expect_after regular expression, then control is passed to the

associated statements before returning to the next test. In this example, two possibilities for

expect_after have been defined: one for when some text at least ending in the calc

prompt has been obtained, and one for a timeout when all else fails. Both the

expect_after situations are fails, but are logged with a different annotation.

The log after running these tests

=== calc tests ===

spawn calc

calc: Running

./testsuite/calc.test/calc.exp ...

add 3 4

7

calc: PASS: add1

add 1 2 3

Usage: add #1 #2

calc: PASS: add2

multiply 2 4

12

calc: FAIL multiply2 (bad match)

 === calc Summary ===

of expected passes 2

of unexpected failures 1

© Graham G. Thomason 2003-2004 17

4. Automated test generation

We have discussed how the test framework must support automated test execution (as far as

possible) for all testing phases. Under some circumstances it may be possible to deploy

automated test generation as well. The generated tests may be generated as a batch, in which

case the same testing set-up can be used as for automated test execution. A more advanced

form of automated test generation is on-the-fly automated test generation, where what later

tests are generated depends on the results earlier tests.

 Automatic generation of tests is possible where the specifications are in a formalism with

which a test generator can work:

o state-based tests (derived from a state-transition diagram)

o decision tables

o cause-effect graphing

o syntax testing

 Another form of automated testing is

o random testing

4.1 State-based testing

The state behaviour of a system is described by a statechart, as in the dynamic model of

UML. The elements of the model are

 states (in a hierarchy)

 events

 transitions (these connect source state(s) to target state(s) on an event; we say an

event triggers a transition).

Below is an example from a smart-card manager:

18 © Graham G. Thomason 2003-2004

Figure 7. Statechart of a smart-card manager

Statecharts like this are valuable in pinning down the specifications and in providing a good

handle for testing, whether by hand-crafted tests or by automatic test generation. To test

against a statechart like this, we need to at least cover all transitions. Deeper coverage could

be obtained by requiring transition pairs.

To automate the process, we need two key programs (best kept separate)

o A test generator that says what events are to be processed

o A test oracle to the tests that says what the new state is (or what outputs were

expected). The oracle program may entail a language to describe the statechart, a

compiler and a run-time machine engine for that language. STATECRUNCHER

[StCrMain] is such an oracle.

For white-box testing, we are able to examine the state of the IUT and test against states. For

black box testing, we test against outputs. The figure below illustrates white box state-based

testing.

Error Card

MiscellaneousErrors ErrorHandled

Disconnected

Connected
No_Card

InsertCard RemoveCard

Connect Disconnect

Card OK

Sent

Ready

Retrieving

Sending

Configuring

DscDataReceived

DscDataReceived

DscDataTransmit

Resetting

Configure
Send

OK

OK

Reset

© Graham G. Thomason 2003-2004 19

Figure 8. State based testing basics

The [TorX] architecture has a more explicit test case generator in a tool chain as follows (with

TorX terminology at the top, and more conventional terminology below).

Figure 9. TorX architecture

The TorX tool chain forms the basis of investigations by Philips Research Bangalore in the

use of the TorX toolchain using STATECRUNCHER [StCrMain] as the oracle.

Very large numbers of tests can be generated using state-based testing, though the nature of

the tests is often very unlike that of hand-crafted ones. This is especially true where there is

parallelism in the model. The technique has been effective in finding defects in a DVD system

and in the G+4 set-top box platform.

4.2 Decision tables

Decision tables directly relate combinations of inputs to multiple outputs.

Inputs are called the condition stub.

Outputs are called the action stub.

Table 2. Decision table example

Rule (e.g. from
Requirements
Specification)

Condition stub Action stub

C1 C2 C3 A1 A2

 true true true true true

 true true false false false

 true false x false true

 false x x true false

State Behaviour

Model (SBM)

Implementation

Under Test (IUT)

compare

set

state

process

event

get

state

set

state

process

event

get

state

Test Script

Adapter

glue code to

communicate

with IUT

Explorer

state machine

oracle

Driver

test harness

Primer

test case

generator

IUT

20 © Graham G. Thomason 2003-2004

Use x for "don't care" in the condition stub.

The decision table represents a (usually pruned) tree:

Figure 10. Decision table as a tree

Check the decision table for

 completeness (no undetermined outputs)

 consistency (no contradictions)

 good sense (review activity)

In principle generate all input combinations

 Condition stub Action stub

 C1 C2 C3 A1 A2

 true true true true true

 true true false false false

 true false x→true false true

 true false x→false false true

 false x→true x→true true false

 false x→true x→false true false

 false x→false x→true true false

 false x→false x→false true false

Table 3. Combinations in a decision table

An x does not mean “don't care” to the tester!! In principle generate all input combinations,

(so whever an x occurs, generate the true and false value).

Use the decision table as an oracle to the tests. To generate the tests:

 For small decision tables, the test cases can be generated by hand.

 Decision tables are a simple case of CEG (Cause Effect Graphing), and a CEG tool

can be used (see section 4.3).

 Rules from the requirements specification can be expressed in a rule or logic based

program such as PROLOG.

The following example illustrates how PROLOG can be used to generate the tests.

 C1

C2

C3

no yes

no yes

no yes

(A1,A2) (yes,no) (no,yes) (no,no) (yes,yes)

© Graham G. Thomason 2003-2004 21

Robot Arm Example
1

A robot has three kinds of gripper:

 magnet

 sucker

 parallel fingers

The following rules to determine how to pick up an object:

 A magnet can only be used on ferrous objects

 A magnet requires an accessible upper surface

 A sucker requires a smooth object

 A sucker requires an accessible upper surface

 Parallel fingers require a rough object

 Parallel fingers require accessible parallel faces

1
 This example was suggested to the author for an exercise with an expert system shell by an engineer

at Agfa-Gevaert in Antwerp in 1985.

22 © Graham G. Thomason 2003-2004

PROLOG program to derive test cases from rules

/*--*/

/* Module: robot1.pl */

/* Author: Graham Thomason, Philips Research Laboratories, Redhill */

/* Date: 10 Jun, 1999 */

/* Purpose: Example of unpruned decision table generation */

/* */

/* Copyright (C) 1999 Philips Electronics N.V. */

/*--*/

/*--*/

/* Representation of an object */

/* =========================== */

/* An object is of the format [AUS,APF,FERROUS,SMOOTH] */

/* AUS = Accessible Upper Surface */

/* APF = Accessible Parallel faces */

/* FERROUS= is ferrous */

/* SMOOTH = is smooth */

/* Each item in this list can be 't' (true) or 'f' (false) */

/* if SMOOTH=f, then we say the object is rough */

/*--*/

/*--*/

/* Rules for picking up by different robot arms */

/* Self explanatory predicate names */

/* */

/* Parameters */

/* X (In) The object being examined for picking */

/* For representation of the object, see comment above */

/* VAL (Out) ='y' (yes) or 'n' (no) according to the pickability */

/*--*/

pickByMagnet(X,y):-

 hasAccUpSurf(X),

 isFerrous(X),

 !.

pickByMagnet(X,n).

pickBySucker(X,y):-

 hasAccUpSurf(X),

 isSmooth(X),

 !.

pickBySucker(X,n).

pickByFingers(X,y):-

 hasAccParFaces(X),

 isRough(X),

 !.

pickByFingers(X,n).

/*--*/

/* Testing for different properties in object */

/* == */

/* The predicates take an object as their parameter and succeed if: */

/* hasAccUpSurf(X): if X has an accessible upper surface */

/* hasAccParFaces(X): if X has an accessible parallel faces */

/* isFerrous(X): if X is ferrous */

/* isSmooth(X): if X is smooth */

/* isRough(X): if X is rough */

© Graham G. Thomason 2003-2004 23

/*--*/

hasAccUpSurf(X):-

 X=[t,_,_,_].

hasAccParFaces(X):-

 X=[_,t,_,_].

isFerrous(X):-

 X=[_,_,t,_].

isSmooth(X):-

 X=[_,_,_,t].

isRough(X):-

 X=[_,_,_,f].

/*--*/

/* Generate all objects (on backtracking) */

/* generates [f,f,f,f], [f,f,f,t], [f,f,t,f], etc. */

/*--*/

obj([AUS,APF,FERROUS,SMOOTH]):-

 ausVal(AUS), /* accessible upper surface value */

 apfVal(APF), /* accessible parallel faces value */

 ferrousVal(FERROUS), /* ferrous value */

 smoothVal(SMOOTH). /* smooth value */

ausVal(X):- tfVal(X).

apfVal(X):- tfVal(X).

ferrousVal(X):-tfVal(X).

smoothVal(X):- tfVal(X).

tfVal(f).

tfVal(t).

/*--*/

/* main loop */

/* Writes abbreviated keywords vertically */

/* AUS=Accessible Upper Surface (object has) */

/* MAG=Magnet (object is pickable pickable by) */

/* etc. */

/*--*/

go:-

 write(' A A F S M S F'),nl,

 write(' U P E M A U I'),nl,

 write(' S F R O G C N'),nl,

 fail.

go:-

 obj(X), /* loop over all objects */

 pickByMagnet(X,PBM),

 pickBySucker(X,PBS),

 pickByFingers(X,PBF),

 write(X),tab(1),write(PBM),tab(1),write(PBS),tab(1),write(PBF),nl,

 fail.

go.

24 © Graham G. Thomason 2003-2004

Output (with minor reformatting to facilitate annotation)

Figure 11. Robot arm output

| ?- go.

 A A F S M S F

 U P E M A U I

 S F R O G C N

[f,f,f,f] n n n

[f,f,f,t] n n n

[f,f,t,f] n n n

[f,f,t,t] n n n

[f,t,f,f] n n y

[f,t,f,t] n n n

[f,t,t,f] n n y

[f,t,t,t] n n n

[t,f,f,f] n n n

[t,f,f,t] n y n

[t,f,t,f] y n n

[t,f,t,t] y y n

[t,t,f,f] n n y

[t,t,f,t] n y n

[t,t,t,f] y n y

[t,t,t,t] y y n

yes

| ?-

Object Properties

Accessible upper surface

Accessible parallel faces

Ferrous

Smooth

f = property is false

t = property is true

Gripper possibilities

Magnet suitable

Sucker suitable

Parallel fingers suitable

n = no, this gripper is not suitable

y = yes, this gripper is suitable

© Graham G. Thomason 2003-2004 25

Karnaugh maps

Decision tables can also be represented as grids or spreadsheets (with 2 inputs) or as cubes

(with 3 inputs - but then separate planes are drawn) or as hypercubes for more inputs. These

diagrams are called Karnaugh maps. Adjacent cells with the same output value, but with at

least one input value held constant, reveal where a group of outputs is not dependent on all

inputs, and so showing where decision logic can be simplified. The figure below shows the

Karnaugh map for the robot arm, with colour coding to show grouping.

INPUTS: 4 binary variables (values t and f)

 [AccUppSurf, ParFaces, Ferrous, Smooth]

OUTPUTS: 3 binary variables (values y and n)

 [CanUseMagnet, CanUseSucker, CanUseFingers]

Figure 12. Karnaugh map

AccUpSurf=f, ParFaces=f

Inputs: [f, f, Ferrous, Smooth]

Smooth

Ferrous

f t

f nnn nnn

t nnn nnn

AccUpSurf=f, ParFaces=t
Inputs: [f, t, Ferrous, Smooth]

Smooth

Ferrous

f t

f nny nnn

t nny nnn

AccUpSurf=t, ParFaces=f
Inputs: [t, f, Ferrous, Smooth]

Smooth

Ferrous

f t

f nnn nyn

t ynn yyn

AccUpSurf=t, ParFaces=t
Inputs: [t, t, Ferrous, Smooth]

Smooth

Ferrous

f t

f nny nyn

t yny yyn

26 © Graham G. Thomason 2003-2004

From the Karnaugh map a decision table with don't cares can be constructed. The same

colour code as in the Karnaugh map is used below. Where 2 Karnaugh map cells form a

group, there will be one don't care, and where 4 cells form a group, there will be 2 don't

cares.

Condition Action

Upper

Surface

Parallel

Faces

Ferrous Smooth Magnet Sucker Parallel

Fingers

f f x x n n n

f t x t n n n

f t x f n n y

t x t t y y n

t x f t n y n

t f f f n n n

t f t f y n n

t t f f n n y

t t t f y n y

Table 4. Robot gripper decision table

Decision tables are a feed-forward technique. They are applicable where there is no obvious

memory in the logic, in contrast to state-based testing where states represent memory so that

the same event can have a different effect at different times because of the state. However, it

is possible to model simple state models as decision tables, where parallel states become

condition stub items, the event becomes another condition stub item, and the action stub items

are the new states.

© Graham G. Thomason 2003-2004 27

4.3 Cause-effect graphing (CEG)

Cause-effect graphing is described in detail in [Myers, p.56]. The technique consists

establishing a relationship between inputs and outputs where the logic is more than a simple

decision table. There is typically a network of logical gates (with their own CEG symbols),

under constraints (shown by dotted lines below).

Figure 13. A CEG

The constraint one above indicates that exactly one of the inputs B and F must be true, and G

requires H indicates that for G to be true, H must be true.

The idea is to test key input combinations of each gate. The complexities arise from:

 The need to avoid combinatorial explosion, so to combine tests efficiently.

 The presence of constraints, such as one input requiring a truth-value of another to

make sense. For example if one input is (x>0) and another is (x>6), it is not possible

to have the first true and the second false.

 Observability issues. If intermediate nodes are not observable, the output of a gate

must be propagated through the network. This puts sensitization requirements on

other gates. This is not always logically possible - leaving certain gate combinations

untestable (unless extra observability/controllability measures are taken).

The output of test cases from a CEG tool is similar to that of decision tables.

There is a commercial tool for generating CEGs:

 A tool originally called SoftTest from Bender and Associates, then apparently under

Borland called Caliber-RBT and now under Nohau called Caliber-RM.

 A

B

C

F

G

H

X1

J

K

X2

P

{
Q

X3

R

S

Y
(nand)

(or)

(and)

(or)

(one)

O

R

(requires)

T

(and)

Z

(and)

28 © Graham G. Thomason 2003-2004

The following pages show how CEGs can be used to test the colour of a teletext object
1
.

Teletext objects are used to overwrite parts of a teletext page, but with quite complex rules to

govern the colour of the new text.

We take specifications from the standard (ETS 300 706, May 1997), paragraph 13, page 98.

 Example of an object overwriting underlying text:

One application of teletext objects is to place an advertisement in a certain place on a set of

pages, without the need to re-code the pages individually.

There are 3 kinds of object, plus underlying text, with highest-to-lowest priority as follows:

 Passive

 Adaptive

 Active

 Underlying text

We consider the 3 kinds of object in turn.

1
 The test cases are for illustrative purposes. Absolute accuracy cannot be guaranteed, though care has

been taken with them, as, due to changing testing priorities, these tests have not actually been deployed.

 T H E F A S T D O G A N D

 L A Z Y

 T H E L A Z Y D O G A N D

© Graham G. Thomason 2003-2004 29

Active Objects

 Colour change affects underlying text (“AND”)

 Until underlying text changes colour, (“CAT”)

 Colour change stays in effect to end of row (not end of object range)

Active object example

b T H E F A S T D O G A N D r C A T g R A N I N

 L A Z Y C O W F O X S A T

 p y

 --range of object cells addressed by object--

 T H E L A Z Y C O W A N D F O X S A T I N

 blue blue pink pink red yellow yellow

Object does
not have an
initial colour

change

-> Underlying
colour

Object sets
a new
colour

Colour
change
stays in
effect

Underlying
text sets

new colour

Active object sets
a new colour

This stays in
effect to end of

row

Figure 14. Active object example

30 © Graham G. Thomason 2003-2004

Adaptive Objects

 Colour depends on

 Colour set by adaptive object

 Else as set by previous active object

 Else colour of underlying text,

 Underlying col change gets overridden

 Colour changes end at end of object

Adaptive object example

b T H E F A S T D O G A N D r C A T g R A N I N

 L A Z Y C O W F O X S A T

 p y

 --range of object cells addressed by object--

 T H E L A Z Y C O W A N D F O X S A T I N

 blue blue pink pink pink yellow green

Object does
not have an
initial colour
change

-> Underlying
colour

Object sets
a new
colour

Colour
change
stays in
effect on
under-lying
text

Object
overrides
underlying
colour
change

Object sets a
new colour.

Does not remain
in force after end
of object

Figure 15. Adaptive object example

© Graham G. Thomason 2003-2004 31

Passive objects

 If no object colour specified, displayed colour=WHITE (highest priority inherits nothing)

 Where no character defined in object, underlying text retains its colour.

 Colour changes end at end of object

Figure 16. Passive object example

b T H E F A S T D O G A N D r C A T g R A N I N

 L A Z Y C O W F O X S A T

 p y

 --range of object cells addressed by object--

 T H E L A Z Y C O W A N D F O X S A T I N

 blue white pink blue pink yellow green

Object does
not have an
initial colour

change

->WHITE

Object sets
a new
colour

Under-
lying

colour
back in
force

Object
overrides

underlying
colour

change

Object sets a new
colour

Does not remain
in force after end

of object

Figure 17. Passive object example

32 © Graham G. Thomason 2003-2004

SoftTest Source of the Teletext Object CEG

/*--*/

/* Module: TutTxtObj.ceg - Teletext objects */

/* Author: Graham Thomason, Philips Research Laboratories, Redhill */

/* Date: 28 May, 1999 */

/*--*/

TITLE 'Teletext Objects'.

NODES

/*--*/

/* CAUSES */

/*--*/

CharBeforeObj = 'Char is before any object'.

CharAfterPAS = 'Char is after a PASSIVE object'.

CharAfterADP = 'Char is after an ADAPTIVE object'.

CharAfterACT = 'Char is after an ACTIVE object'.

CharInPAS = 'Char is in a PASSIVE object'.

CharInADP = 'Char is in an ADAPTIVE object'.

CharInACT = 'Char is in an ACTIVE object'.

ExplicitObjChar = 'Char is explicitly overwritten in the object'.

UnderlyingColChange = 'Underlying text changes colour under the object'.

ObjColSet = 'Object has set colour'.

/*---*/

/* Intermediate Nodes */

/*---*/

AfterObjDispColUnder = 'Char after object- Display in underlying col'.

AfterObjDispColObj = 'Char after object- Display in object colour'.

InObjDispColUnder = 'Char in object- Display in underlying col'.

InObjDispColObj = 'Char in object- Display in object colour'.

InObjDispColWhite = 'Char in object- Display in white'.

/*---*/

/* Effects */

/*---*/

DispColUnder = 'Display the char in the underlying colour'.

DispColObj = 'Display the char in the last colour set by the object'.

DispColWhite = 'Display the char White'.

/*---*/

/* Constraints */

/*---*/

CONSTRAINTS

ONE (CharBeforeObj,

 CharAfterPAS,CharAfterADP,CharAfterACT,

 CharInPAS,CharInADP,CharInACT).

MASK (CharBeforeObj,ExplicitObjChar,UnderlyingColChange,ObjColSet).

MASK (CharAfterPAS,ExplicitObjChar).

MASK (CharAfterADP,ExplicitObjChar).

MASK (CharAfterACT,ExplicitObjChar).

/*---*/

/* Relations */

/*---*/

RELATIONS

AfterObjDispColUnder:-

 CharAfterPAS

© Graham G. Thomason 2003-2004 33

 OR CharAfterADP

 OR (CharAfterACT AND NOT ObjColSet)

 OR (CharAfterACT AND ObjColSet AND UnderlyingColChange).

AfterObjDispColObj:-

 CharAfterACT AND ObjColSet AND NOT UnderlyingColChange.

InObjDispColUnder:-

 (CharInACT AND ObjColSet AND UnderlyingColChange)

 OR (CharInACT AND NOT ObjColSet)

 OR (CharInADP AND NOT ObjColSet)

 OR (CharInPAS AND ObjColSet AND NOT ExplicitObjChar)

 OR (CharInPAS AND NOT ObjColSet AND NOT ExplicitObjChar).

InObjDispColObj:-

 (CharInACT AND ObjColSet AND NOT UnderlyingColChange)

 OR (CharInADP AND ObjColSet)

 OR (CharInPAS AND ObjColSet AND ExplicitObjChar).

InObjDispColWhite:-

 CharInPAS AND NOT ObjColSet AND ExplicitObjChar.

DispColUnder:-CharBeforeObj OR AfterObjDispColUnder OR InObjDispColUnder.

DispColObj:- AfterObjDispColObj OR InObjDispColObj.

DispColWhite:-InObjDispColWhite.

/* -----[End of script] ----*/

34 © Graham G. Thomason 2003-2004

SoftTest “definition matrix”

The parameter settings for each of 15 tests are seen from the table produced, below. The first

test, TEST#01, says that a character after the end of a passive object (and so not before or in

any object), where no colour was set in the object, but where the colour of the underlying text

in the range of the object did change, is displayed in the underlying colour. The three

observable output properties are marked {obs}.

Figure 18. SoftTest definition matrix

© Graham G. Thomason 2003-2004 35

Limitations of SoftTest & CEGs

 SoftTest is not a test harness

 It does not claim to be.

 The tests are also output as an ASCII file and can be converted to a scripting language

for use with a test harness.

 In SoftTest, the number of tests is so highly optimized that it may fail to generate tests

that distinguish two inputs. For example if there is an input A to one gate, and B to

another, we may find that A and B are always set to true and false together.

 CEGs are just one approach to systematic testing. They are not likely to be sufficient on

their own, and should be supplemented by other forms of testing.

36 © Graham G. Thomason 2003-2004

4.4 Syntax testing

Reference: [Beizer, ch 9] explains how syntax testing is not only applicable to formal

computer languages, because software systems often have hidden languages. These may be

 a user input language

 a data format with many (perhaps nested) options (e.g. bmp files, avi files, mpeg

files)

 an inter-process communication convention

 an API calling sequence convention

 communication protocols

Our example below is for C, but many systems that are not languages like C exhibit hidden

languages that can be tested by syntax testing. The syntax may be represented

diagrammatically as a railroad diagram, which defines the grammar, e.g.

Figure 19. Syntax graph - a bit of C

Test generation possibilities

 Generate legal productions of the grammar and feed them to the IUT.

 Mutate the grammar, generate productions of that, filtering them out if they happen to

also be parsable by the original grammar, feed these to the IUT and check that they

are recognized as error situations.

structure or
union specifier

type specifier

void

int

struct

structure or union specifier

structure member declaration

type specifier

declarator

bit field declaration

union

identifier

identifier

struct
member

declaration

char

etc

{ }

© Graham G. Thomason 2003-2004 37

The oracle, if any, must come from some additional information, perhaps manually supplied,

or embedded in the grammar. Even if no oracle to the tests is supplied, the tests have value in

testing the robustness of the system. Value can be added by putting assertions in the code.

We now show how syntax coverage can be obtained using a Prolog program. The example

illustrates how Prolog Definite Clause Grammars can serve two purposes:

 Obtaining a parse of input

 Generating productions from the grammar

The example generates sentences where several simple sentences can also be conjoined to

make one long sentence of the kind:

the boy likes the girl and the girl eats a pear and ...

Figure 20. Syntax - a sentence

There is additional code to prevent sentences of the type

 the A likes the A

 the A likes the B and the A likes the B

simple

sentence

conjunction sentence
Sentence

38 © Graham G. Thomason 2003-2004

Listing
/*--*/

/* Module: sentence.pl */

/* Author: Graham Thomason, Philips Research Laboratories, Redhill */

/* Date: 10 Jun, 1999 */

/* Project: S/W Testing: */

/* Purpose: Example of syntax-based test generation */

/* */

/* Copyright (C) 1999 Philips Electronics N.V. */

/*--*/

/*--*/

/* EXTERNALS used by this module */

/* ggtlib:io_pp */

/*--*/

/*--*/

/* NonTerminals */

/* ============ */

/*--*/

/*--*/

/* sentence */

/* recursive!! */

/* we prevent sentences of the type */

/* [A likes B ... and A likes B] */

/*--*/

sentence(Y,Z):- /* non DCG goal supplies default parameters */

 sentence(1,Y,Z,[]).

sentence(DEPTH,[sentence,S1])-->

 simple_sentence(S1).

sentence(DEPTH,[sentence,S1,C|RESTLIST])-->

 simple_sentence(S1),

 conjunction(C),

 {(NEWDEPTH is DEPTH+1)},

 {((NEWDEPTH =< 3) ; (NEWDEPTH > 3,!,fail))},

 sentence(NEWDEPTH,S2),

 {(S2=[_|RESTLIST])},

 {(gn_not(gn_member(S1,RESTLIST)))}.

/*--*/

/* simple_sentence */

/* we prevent [a Z likes a Z] type of sentence */

/*--*/

simple_sentence([simple_sentence,NP,VP])-->

 noun_phrase(NP),

 verb_phrase(VP),

 {(NP=[_,_,N],N=[_,NW],

 VP=[_,_,NP2],NP2=[_,_,N2],N2=[_,NW2],

 NW\=NW2)}. /* not the same noun in both places */

/*----------------------------*/

/* noun_phrase */

/*----------------------------*/

noun_phrase([noun_phrase,A,N])-->

 article(A),

 noun(N).

/*----------------------------*/

/* verb_phrase */

/*----------------------------*/

verb_phrase([verb_phrase,V,NP])-->

© Graham G. Thomason 2003-2004 39

 verb(V),

 noun_phrase(NP).

/*---*/

/* Terminals */

/* ========= */

/*---*/

article([article,A])-->

 {(article(A))},

 [A].

article(the).

/* article(a). */

noun([noun,N])--> /* noun/3 */

 {(noun(N))}, /* noun/1 */

 [N].

noun(boy).

noun(girl).

/* noun(cherry). */

/* noun(pear). */

verb([verb,V])-->

 {(verb(V))},

 [V].

verb(knows).

verb(likes).

conjunction([conjunction,C])-->

 {(conjunction(C))},

 [C].

conjunction(and).

/* conjunction(but). */

/*---------------*/

/* simple tests */

/*---------------*/

tterm:-tarti,tnoun,tverb,tconj.

tarti:-article(P,[X],[]),write(P),tab(1),write(X),nl,fail.

tarti.

tnoun:-noun(P,[X],[]),write(P),tab(1),write(X),nl,fail.

tnoun.

tverb:-verb(P,[X],[]),write(P),tab(1),write(X),nl,fail.

tverb.

tconj:-conjunction(P,[X],[]),write(P),tab(1),write(X),nl,fail.

tconj.

tnp1:-noun_phrase(P,X,[]),io_pp(P),tab(1),write(X),nl,nl,fail.

tnp1.

tnp2:-noun_phrase(P,X,[]), tab(1),write(X),nl, fail.

tnp2.

tvp1:-verb_phrase(P,X,[]),io_pp(P),tab(1),write(X),nl,nl,fail.

tvp1.

tvp2:-verb_phrase(P,X,[]), tab(1),write(X),nl, fail.

tvp2.

tss1:-simple_sentence(P,X,[]),io_pp(P),tab(1),write(X),nl,nl,fail.

tss1.

40 © Graham G. Thomason 2003-2004

tss2:-simple_sentence(P,X,[]), tab(1),write(X),nl,nl,fail.

tss2.

tsen1:-

 sentence(1,P,X,[]),write(P),nl,io_pp(P),tab(1),write(X),nl,nl,fail.

tsen1.

tsen2:-

 sentence(1,P,X,[]),tab(1),write(X),nl,fail.

tsen2.

/*----------------[end of module sentence.pl]---------------------*/

Coverage Output

| ?- tsen2.

 [the,boy,knows,the,girl]

 [the,boy,likes,the,girl]

 [the,girl,knows,the,boy]

 [the,girl,likes,the,boy]

 [the,boy,knows,the,girl,and,the,boy,likes,the,girl]

 [the,boy,knows,the,girl,and,the,girl,knows,the,boy]

 [the,boy,knows,the,girl,and,the,girl,likes,the,boy]

 [the,boy,knows,the,girl,and,the,boy,likes,the,girl,and,the,girl,knows,the,boy]

 [the,boy,knows,the,girl,and,the,boy,likes,the,girl,and,the,girl,likes,the,boy]

 [the,boy,knows,the,girl,and,the,girl,knows,the,boy,and,the,boy,likes,the,girl]

 [the,boy,knows,the,girl,and,the,girl,knows,the,boy,and,the,girl,likes,the,boy]

 [the,boy,knows,the,girl,and,the,girl,likes,the,boy,and,the,boy,likes,the,girl]

 [the,boy,knows,the,girl,and,the,girl,likes,the,boy,and,the,girl,knows,the,boy]

 [the,boy,likes,the,girl,and,the,boy,knows,the,girl]

 [the,boy,likes,the,girl,and,the,girl,knows,the,boy]

 [the,boy,likes,the,girl,and,the,girl,likes,the,boy]

 [the,boy,likes,the,girl,and,the,boy,knows,the,girl,and,the,girl,knows,the,boy]

 [the,boy,likes,the,girl,and,the,boy,knows,the,girl,and,the,girl,likes,the,boy]

 [the,boy,likes,the,girl,and,the,girl,knows,the,boy,and,the,boy,knows,the,girl]

 [the,boy,likes,the,girl,and,the,girl,knows,the,boy,and,the,girl,likes,the,boy]

 [the,boy,likes,the,girl,and,the,girl,likes,the,boy,and,the,boy,knows,the,girl]

 [the,boy,likes,the,girl,and,the,girl,likes,the,boy,and,the,girl,knows,the,boy]

 [the,girl,knows,the,boy,and,the,boy,knows,the,girl]

 [the,girl,knows,the,boy,and,the,boy,likes,the,girl]

 [the,girl,knows,the,boy,and,the,girl,likes,the,boy]

 [the,girl,knows,the,boy,and,the,boy,knows,the,girl,and,the,boy,likes,the,girl]

 [the,girl,knows,the,boy,and,the,boy,knows,the,girl,and,the,girl,likes,the,boy]

 [the,girl,knows,the,boy,and,the,boy,likes,the,girl,and,the,boy,knows,the,girl]

 [the,girl,knows,the,boy,and,the,boy,likes,the,girl,and,the,girl,likes,the,boy]

 [the,girl,knows,the,boy,and,the,girl,likes,the,boy,and,the,boy,knows,the,girl]

 [the,girl,knows,the,boy,and,the,girl,likes,the,boy,and,the,boy,likes,the,girl]

 [the,girl,likes,the,boy,and,the,boy,knows,the,girl]

 [the,girl,likes,the,boy,and,the,boy,likes,the,girl]

 [the,girl,likes,the,boy,and,the,girl,knows,the,boy]

 [the,girl,likes,the,boy,and,the,boy,knows,the,girl,and,the,boy,likes,the,girl]

 [the,girl,likes,the,boy,and,the,boy,knows,the,girl,and,the,girl,knows,the,boy]

 [the,girl,likes,the,boy,and,the,boy,likes,the,girl,and,the,boy,knows,the,girl]

 [the,girl,likes,the,boy,and,the,boy,likes,the,girl,and,the,girl,knows,the,boy]

 [the,girl,likes,the,boy,and,the,girl,knows,the,boy,and,the,boy,knows,the,girl]

 [the,girl,likes,the,boy,and,the,girl,knows,the,boy,and,the,boy,likes,the,girl]

yes

| ?-

© Graham G. Thomason 2003-2004 41

Example of a parse

| ?-

sentence(P,[the,boy,likes,the,girl,and,the,girl,knows,the,boy]),io_pp(P).

 sentence

 simple_sentence

 noun_phrase

 article

 the

 noun

 boy

 verb_phrase

 verb

 likes

 noun_phrase

 article

 the

 noun

 girl

 conjunction

 and

 simple_sentence

 noun_phrase

 article

 the

 noun

 girl

 verb_phrase

 verb

 knows

 noun_phrase

 article

 the

 noun

 boy

P =

[sentence,[simple_sentence,[noun_phrase,[article,the],[noun,boy]],[verb_phra

se,[verb,likes],[noun_phrase,[article,the],[noun,girl]]]],[conjunction,and],

[simple_sentence,[noun_phrase,[article,the],[noun,girl]],[verb_phrase,[verb,

knows],[noun_phrase,[article,the],[noun,boy]]]]]

| ?-

Code for the above pretty print formatter is as in [Clocksin, p.81].

42 © Graham G. Thomason 2003-2004

4.5 Orthogonal arrays

Suppose a routine needs testing with 4 parameters, (A, B, C, and D), each of which can take 3

values (1, 2, and 3). Exhaustive testing would require running 3
4
=81 tests. But suppose we

find it adequate that all pairwise combinations of parameter values are taken. A table can be

found satisfying this with 9 entries of values of the 4 parameters as follows:
ABCD

1111

1223

1332

2122

2231

2313

3133

3212

3321

For pairwise coverage as above we speak of orthogonal arrays of strength 2. If we had

required that all triples of parameters should be covered for all combinations of values, the

strength would be 3 and so on. See also [Sloane]; the above array is equivalent to the one at

http://www.research.att.com/~njas/oadir/oa.9.4.3.2.txt.

4.6 Other model-based testing

Of the UML models, the dynamic model (state-based testing) is probably the most amenable

to automated testing. But use cases, message sequence diagrams, collaboration diagrams etc.

are also being used to derive tests. The [Agedis] project addresses model based testing

including such models. There is also a very rich website on model-based testing maintained

by Harry Robinson, with UML-based testing featuring prominently, [Robinson].

4.7 Random testing

Random testing can also be useful. In this case there is no precise oracle to the tests.

However, by densely larding the code with assertions (which act as oracles in a way), the tests

have value in testing the robustness of the system.

4.8 Summary of automated test generation

Automated test generation requires formal specifications such as a UML model, a decision

table, a cause effect graph, or the grammar rules of a language. Large numbers of tests can be

generated. State based testing has proved to be particularly effective in finding defects in

practice. Sometimes the techniques, which could be used for automated test generation, can

be applied by hand (e.g. for a small statechart or decision table).

© Graham G. Thomason 2003-2004 43

5. Abbreviations

5.1 Testing-related abbreviations

BCC Branch Condition Coverage

BCS British Computer Society

BDC Branch Decision Coverage

BCCC Branch Condition Combination Coverage

CEG Cause Effect Graphing

IUT Implementation Under Test

LCSAJ Linear Code Sequence and Jump (coverage)

MC/DC Modified Condition / Decision Coverage

PHASST Philips Approach to Structured System Testing. See [PHASST]

QAC Probably: Quality Assessment for C. See [QAC]

SIGiST Special Interest Group in Software Testing

TCL Tool Command Language

5.2 Other abbreviations used

API Application Programmer Interface

GNU Gnu's Not Unix - see http://www.gnu.org

GUI Graphical User Interface

MPEG Moving Picture Experts Group

UML Unified Modelling Language

44 © Graham G. Thomason 2003-2004

6. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

© Graham G. Thomason 2003-2004 45

References

[Agedis] www.agedis.de

[BCS Sigist] Standard for Software Component Testing

British Computer Society Special Interest Group in Testing

[Beizer] Boris Beizer

Software Testing Techniques

Thomson Computer Press, ISBN 1850328803

[Catalysis] D.F. D'Souza

Objects, Components and Frameworks with UML

 Addison-Wesley, 1998. ISBN 0-201-31012-0 (alk. paper)

[Caliber] http://www.nohau.se/products/kravhantering.html

[Cantata] http://www.iplbath.com

[Clocksin] W.F. Clocksin & C.S. Mellish

 Programming in Prolog

 Springer Verlag, 1981. ISBN 3-540-11046-1

[CTC++] http://www.testwell.fi/ctcdesc.html

[CYGWIN] www.cygwin.com

Cygwin is a Linux-like environment for Windows. It consists of two

parts:

 A DLL (cygwin1.dll) which acts as a Linux emulation layer

providing substantial Linux API functionality.

 A collection of tools, which provide Linux look and feel.

[DejaGnu] R. Savoye

 The DejaGnu Testing Framework

 The Free Software Foundation, 1993

[Dupuy] Arnaud Dupuy and Nancy Leveson

An Empirical Evaluation of the MC/DC Coverage Criterion on the

Hete-2 Satellite Software

DASC (Digital Aviation Systems Conference), Oct 2000

[Evans] Isabel Evans

Non-functional testing techniques

http://www.fortest.org.uk/documents/Evans_sheffield.pdf

46 © Graham G. Thomason 2003-2004

[Expect-DL] Don Libes

Exploring Expect

O'Reilly 1995. ISBN: 1-56592-090-2

[Expect-Nist] http://expect.nist.gov/

[McCabe] http://www.mccabe.com

http://www.mccabe.com/coverage_server.php

[Myers] G.J. Myers

The Art of Software Testing

 John Wiley & Sons, 1979. ISBN 0-471-04328-1

[Phadke] Madhav S. Phadke

 Planning efficient software tests

 http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp

[PHASST] Elena Pérez-Miñana

PHASST (Philips Approach To Structured System Testing)

Philips PDSL Document 1207, 2003

[Purify] http://www.rational.com

http://www.ibm.com

[QAC] http://www.programmingresearch.com/main.htm

[Robinson] Harry Robinson

 Model Based Testing Home Page (maintained by)

 http://wwwgeocities.com/model_based_testing

[Sloane] N.J.A. Sloane

 A library of orthogonal arrays

 http://www.research.att.com/~njas/doc/OA.html

[TCL] John Ousterhout

TCL and the TK Toolkit

Addison-Wesley, 1994. ISBN 0-201-63337-X

[TestingStds] http://www.testingstandards.co.uk/definitions.htm

(Gives a summary of non-functional testing techniques)

[TorX] http://fmt.cs.utwente.nl/tools/torx/torx-intro.1.html

© Graham G. Thomason 2003-2004 47

[Trew 98] Tim Trew

 State-based Testing with WinRunner: the State-Relation Package

 Philips PRL Internal Note SEA/704/98/05, 1998

[Trew 99] Tim Trew

The aims of integration testing

Philips PRL Technical Note 3922, 1999

[WinRunner] http://www-svca.mercuryinteractive.com/products/winrunner/

