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STATECRUNCHER Parsing

STATECRUNCHER is a state transition language which is used to as a test oracle to tests of state
behaviour. This report is concerned with the language syntax and how it is compiled.

This report describes the STATECRUNCHER parser. The parser uses the GP4 tool [StCrGP4].
This is a reference manual rather than a user manual.
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1. Introduction and overview

STATECRUNCHER is a state machine system, which is used as a test oracle to state-based tests
for software systems. The figure below shows a tool chain for automatic generation and
execution of tests, with STATECRUNCHER in the chain, and with the parser emphasized.

| STATECRUNCHER Test case Various Executable
Component ; generator tools Tests
Specification Machine P and harness or
Engine g* —> > On-the-fly
G .
L‘ Textual / P L[] A tgs;gqgrr?f
Dynamic Parser| 4 |0 Under Test
Model G

Figure 1. STATECRUNCHER in a testing tool chain
This report covers the detailed syntax of the language, and how it is parsed.

The STATECRUNCHER language is an extension to [ECHSM], which is close to the syntax of
[CHSM]. ECHSM embeds in the state machine language many constructs that CHSM handles
as calls to C++ code. STATECRUNCHER extends the language further syntactically with the
following features:

o Declarations can be made at any hierarchical level; by default they have local scope.

e Scoping operators: Tagnames, enumerators, variables, events, PCOs and states can (in
most cases) be defined and used employing scoping operations so as to refer to a scope
other than the "current scope™.

e Specification of multiple target states.

e Function calls have been added to expression syntax.

In order to concentrate on parsing, this report does not cover the detailed semantics of the
constructs being parsed. STATECRUNCHER's handling of nondeterminism is essentially a
semantic issue, and is not reflected in the syntax. The semantics are described in [StCrMain].
Neither does his report cover commands to a compiled and up-and-running STATECRUNCHER
model. That is described in [StCrPrimer].

The parser for STATECRUNCHER uses Prolog and Definite Clause Grammars (DCG's). A good
book covering this parsing technique is [Clocksin]. An underlying layer of parsing predicates
is provided by the GP4 tool [StCrGP4]. GP4 provides in particular: tokenization, expression
parsing, file I/0, and, for run-time use, evaluation of expressions.
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The parser module as such does not check for context-sensitive errors such as type
mismatches. For this purpose, a validator is run as a back end, also described in this report.

The output of the parser and validator is a set of Prolog-readable data structures consisting of

nested lists. The implementation of Prolog used is WinProlog [WinPro] or SWI-Prolog
[SwiPro].

© Graham G. Thomason 2003-2004



The following figure shows the parsing stages:

STATECRUNCHER model

. - ,

console compiler listing object file
output

Validator

. -

console validator listing data file

output l

input to state
machine engine

Figure 2.  Data flow for the parser and validator
In the packaged STATECRUNCHER system, the user gives a single command to compile, and

the validator is automatically called subsequently, unless there are compilation errors
precluding it.

Abbreviations

CHSM Concurrent Hierarchical finite State Machines

DCG Definite Clause Grammar (Prolog grammar notation)
ECHSM Extended Concurrent Hierarchical finite State Machines
GP4 Generic Prolog Parsing and Prototyping Package

GUI Graphical User Interface

LHS Left Hand Side

PCO Point of Control and Observation

PRL Philips Research Laboratories, Redhill, UK

RHS Right Hand Side

TCL Tool Command Language (scripting language)
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2. Parsing conventions

The detailed syntax of STATECRUNCHER with parsing information is given in subsequent
sections. The present section describes some conventions and recurring techniques used in
parsing it.

2.1 Error status propagation

In order to inform the compiler control module about the success or failure in compiling each
statement, status information is maintained as follows.

Every parse call at all levels of the grammar, (with a few exceptions mentioned below) is of

the type:
parse call (GSTATUS, [ITEM NAME,LSTATUS, ITEM PARSE])--> grammar rhs

Exceptions to this structure:

e Some very low level parse calls which simply succeed or fail, returning the item(s)
consumed only.

e The high-level "statement" parse call, which wraps in additional "machine path"
information. This is described in a subsequent section.

GSTATUS is the global parsing status.

e ltissetto g er if the current parsing rule, or any deeper ones, contains an erroneous
parse.

e ltissetto g ok if the current parsing rule, and all deeper rules, contain a valid parse.

The global parsing status is propagated to each higher level parse. Its purpose is to inform the
compiler control module about whether the parse of a whole statement was successful or not.

LSTATUS is the local parsing status, applying to a fragment of syntax within a statement.

e ltissetto 1 er if the current parsing rule contains an erroneous parse.

o Itis setto 1 ok if the current parsing rule contains a valid parse. It should reflect
whether the function of the current parsing level only could be performed. It should be set
to 1 ok even if there are errors in syntax fragments at a deeper level.

The local parsing status is not normally propagated upwards, except that a status of 1 er
implies that the global parsing status must be set to g _er at this and all higher levels in the
parse tree. The purpose of the local parsing status is to provide information for error message
generation.
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Occasionally a local status may reflect the local parse status of a level just one level deeper.
This may be appropriate when a list is being constructed from a head item parsed at one level,
whilst the tail is parsed at a deeper level. If at the higher level the local status represents the
validity of the list as a whole, and the local status information of individual elements is
discarded in the higher level parse, then the per-element local statuses should be combined.

Note: the global parse status GSTATUS is not stored at each level in the parse tree. This is to
help prevent the parse tree from becoming unnecessarily large. GSTATUS can, of course, be
determined for any part of the parse tree by a recursive analysis.

Illustration of parsing statuses.

Suppose a particular kind of valid number consists of 6 digits d;d,dsdsdsds under the
constraints that d;<d, and ds<d; and ds<de. Figure 3 shows the grammar rules for such a
number, including a semantic annotation to test the constraints. Suppose we attempt to parse
the number 23654 A. There are two reasons why this number is invalid:

e The constraint d;<d, does not hold because 6 is not less than 5.

e The last digit is invalid.

A parse status propagation tree of such an attempted parse, with global and local status
information, is shown in Figure 4.

valid_number

ordered_digit_pair

»| ordered_digit_pair ordered_digit_pair >

\ 4
Y

ordered_digit pair

> first_digit ‘ > second_digit >
first_digit < second_digit

Figure 3.  Parse status illustration: rules for a particular kind of valid_number
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valid number
g er
1 ok

No local error because the error is not
at this level, where the three items

obtained are simply combined.

ordered digit_pair ordered digit_pair ordered digit_pair
k
o g_er 9-T " Local error here too,
ok 1l er 1l er )
- - - because the ordering
cannot be performed
digit digit digit digit digit digit
g ok g ok g ok g ok g ok g_er
1 ok 1 ok 1 ok 1 ok 1 ok 1 er
2 3 6 5 4 A
a valid pair an invalid pair of an invalid pair of
of numbers numbers, because numbers, because
the first is greater the second is not a
than the second digit
Figure 4. Error propagation in parsing the valid_number example
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2.2 Generic aspects to parsing

2.2.1 ldentifiers

Identifiers are GP4 style identifiers, but which are not keyword operators or keywords in
STATECRUNCHER. The predicate sy identifier provides a DCG grammar rule for a
STATECRUNCHER identifier:

identifier

Source Example
alphaXY 06

Generic Parse
[id,1_ok,IDENTIFIER]

GP4
Identifier

not a keyword not a language
operator keyword

Figure 5. Identifier syntax

Items which are identifiers are indicated by an italic comment, e.g

statechart
statechart L 5
name

identifier

Figure 6. Syntax with an identifier
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2.2.2 Repeating items

Two generic parsing techniques for repeating items will be frequently met with; they are
typically handled as in the following figures:

kangas

Source Example

kangal kanga2 kanga3 // Syntactic item "kanga" not defined here.
/I Example: identifiers

Generic Parse
[kangas,1l_ ok, [KANGA, KANGA ,KANGA, .. .]]

A 4

kanga kangas

A 4

v

combine
into a list

Figure 7. Zero or more of item kanga

roos

Source Example
rool,roo2,roo3 // Syntactic item "roo™ not defined here. Example: identifiers

Generic Parse
[roos,1 ok, [ROO,ROO,RO0, ...]1]

A\ 4

roo > rest_roos

v

combine
into a list

rest _roos

roos

~
y

v

J

Figure 8. One or more of item roo, separated by commas
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Resultant parse of lists
In the above examples, parsing information will typically be stripped and re-arranged so as to
produce a list of items. A parse of oofs might be
[oofs,1 ok, [oofl,00f2,00£3]]
rather than a recursively nested structure.

2.2.3 Error messages
The following figure shows how an error message can be built into the parse tree. A minimal

indication to the user is to present the parse tree containing the error message. A more
sophisticated error message can be derived from the parse tree in a future release.

platys

Source Example
platyl,platy2,platy3

Generic Parse
[platys,1l_ok, [PLATY,PLATY, PLATY,...]]

platy platy_ »| rest_platys |
name

combine
into a list

y

platy declaration
error trap

Figure 9. Declaration of platy items
In such an error trap, the syntax is any text, in a non-greedy mode.

Error message format
Error messages are inserted into the parse tree and are of the form:
**Error: parsing predicate: error-detail
The parsing predicate may be a slight variation on the actual predicate name in the
source code (e.g. it may be less abbreviated; underscores may be removed).
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2.2.4 Context sensitive absorption of "any text"

Error traps absorb any text, but sometimes they must ensure they absorb to the next matching
bracket or brace. This is done by the technique illustrated in the following figure.

any_to_close_brace

any_
non_brace

any_ o . any_
» bracepairs >
non_brace non_brace
bracepairs

H@—» any to_close brace —»

any_non_brace

\J

any
character

\ J

any_non_brace

nOt u{u I"IOt u}u

Figure 10. any_to_close_brace
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The following productions are used to absorb any text up to a specific character (typically a
semicolon), but not to the character within deeper braces.

any_to_char

> absorbables to_char

absorbables_to_char

absorbable _to_char

A 4

absorbables_to char

absorbable_to_char

bracepairs

v

item

item not an
opening brace

item not the
"absorb-to" character

Figure 11. absorb_to_char

© Graham G. Thomason 2003-2004
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2.2.5 Cut-fail combinations in parsing

A cut-fail combination means that the current grammar rule is to fail, even if there are some
untried productions (drawn lower down in the railroad diagrams) for this item.

The reasons for using a cut-fail combination are:

e as an optimisation, to eliminate an invalid parse quickly

o toreject a null-item-parse of an optional item if the next token is the token that introduces
a non-null parse of that optional item.

If there is an error trap, this may be redundant. If there is another production that starts with
the same next token, then it may be essential to not have the error trap at this level, but to
provide it a level higher.

If there is another production that starts with the same next token, an alternative is to factor
out the leading token in the representation of the grammar, so that it only occurs in one
production rule. This is efficient, but it may mean defining new terms with respect to the
terminology of an accepted specification document.

optional wallaby block

>@—> wallaby ﬁ’@j\"

~ wallaby block |
. wman

v_

cut,fail

. /

this path will not be taken if the next character is a "["

Figure 12. cut-fail combination
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2.2.6 Transporting a parse up a level

At any given parsing level, there are two options as to how to handle a lower level parse
result:

e nestitinacurrent level parse result

e transport the lower level parse body into the current level parse body.

For example, suppose a lower level parse is as follows:
[possum, 1l ok, [POS,SUM]]

Now suppose we have an optional possum item:

optional possum

T possum 7—»

possum

—®  posS > sum —

Figure 13. optional possum

The two representations could be
e nested:
[opt possum,l ok, [possum,l ok, [POS, SUM]]]
[opt possum, 1l ok, []]
e transported up
[opt possum, 1l ok, [POS,SUM]]
[opt possum,l ok, []]

Transporting a parse up a level reduces the size of the parse tree, which is often convenient in
reducing apparent complexity. The technique is appropriate where relatively trivial
information is added by the extra parse level.

In cases where a parse is transported up a level, the local status (LSTATUS) indicator is
transported up as well.

© Graham G. Thomason 2003-2004 13



2.3 Interfacing with GP4

This section describes the inter-relationship between STATECRUNCHER-specific code and the
underlying base parsing layer GP4 [StCrGP4].

2.3.1 Removal of white space
GP4 tokenization does not eliminate white space. White space is eliminated is as follows:

o Null parses terminate with optional white space
o All terminals are accessed by a generic predicate which eliminates leading and trailing

white space.

Generic terminals that have been defined are as follows:

name usage
ex opt delim null parse

sy_identifier identifiers (excludes keywords)
sy_keyword/4 language keywords, (excludes label keys)
sy labelkey label key

sy int an integer

sy _literal any literal text as provided in the parameter

Table 1. Generic terminals

2.3.2 The interface with the compiler module (cp.pl)
The compiler module makes the following calls to the syntax predicates:

e aninitial call: sy initialize
e per tokenized statement:
sy statement (WORLD, STATUS,OBJECT STATEMENT, Pl STATEMENT, [])

e afinal call: sy finalize (MESSAGE)

STATECRUNCHER uses the sy initialize call to initalize machine path data and to output
object and listing file headers.

The sy statement call is provided with a tokenized statement (based on one line of input,
with continuation lines if present) in parameter p1 STATEMENT. The sy statement
predicate must return

e insTATUS: astatusof g erorg ok

e INOBJECT STATEMENT: anatom or nested list representing the parse

Note that the call is compatible with DCG (Definite Clause Grammar) representation.

14 © Graham G. Thomason 2003-2004



In STATECRUNCHER the sy statement predicate provides a DCG style parse for
e statements with a structural bracket match error (handled without DCG's)

e null statements

e statechart statements

e type declaration statements

e variable declaration statements

e PCO declaration statements

e event declaration statements

o state (cluster, set and leaf-state) statements

Parsing continues from here in DCG format.

The sy finalize call allows the syntax module to return an error message if an end-of-
file has been reached unexpectedly. Otherwise, 'ok'’ is returned. STATECRUNCHER checks that
there are no missing state definitions.

2.4 Conversion from list to predicate

A parsed statement of the type
[oc_statechart, LSTATUS, MACHINEPATH, DETAILEDPARSE]

is turned into a Prolog readable clause in the "object code" file, with a WORLD term added,
of the type
oc_statechart (WORLD, LSTATUS, MACHINEPATH, DETAILEDPARSE) .
e.g.
oc_statechart(l,1 ok, [mpath,l ok, [sc]],
[sc, [statnamsblk,1 ok, [s]]]).

Worlds are used to hold several statechart configurations when produced by nondeterminism
(see [StCrMain]). They have been introduced not only for data constituents, but also for
statechart elements, in preparation for a future enhancement, where the statechart may be
dynamically altered per world.

© Graham G. Thomason 2003-2004 15



3. STATECRUNCHER syntax

3.1 Statements

Sstatement

Source examples:
statechart newtv (STATENAME)
enum tagl {2,..,12};
tagl v1,v2=6;
PCO pcol,pco2;
event eventl,event2@pcol;
cluster g(e,f) deep history

Generic parse:
[statechart, LSTATUS, MACHINEPATH, DETAILEDPARSE]

[typedecl, LSTATUS, MACHINEPATH, DETAILEDPARSE]
[vardecl, LSTATUS, MACHINEPATH, DETAILEDPARSE]
[pcodecls, LSTATUS, MACHINEPATH, DETAILEDPARSE]
[eventdecl, LSTATUS, MACHINEPATH, DETAILEDPARSE]

[state, LSTATUS, MACHINEPATH, DETAILEDPARSE]
>C null statement ) 'y >
brackets
check

statechart statement

L
I

type declaration statement

I

variable declaration statement

|

pco declaration statement

event declaration statement

state statement

L
LT

set, cluster or (leaf) state

Figure 14. Statement
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3.2 Machine path processing
The machine path is a list of the hierarchical state machines that lead to the machine in
question.

Consider the following statechart structure (declarations/transitions excluded):

statechart s (a)
set a(bb,cc,dd,ee, £ff)
cluster Dbb(bbl,bb2,bb3)
state bbl
state bb2
state bb3
cluster cc(ccl,cc2)
cluster ccl (kkk)
state kkk
state cc2
state dd
cluster ee(eel)
cluster eel (j37)
state 33j
state ff

The machine path starts with statechart s, and is represented as [s]. At set a the path is
represented in deep-first order as [a, s]. At cluster bb the path becomes [bb,a,s], then
in its states it becomes [bbl,bb,a,s], [bb2,bb,a,s], [bb2,bb,a,s]. Then the
path shortensto [ec,a,s]. And so on.

In order to maintain the correct path during parsing, the following algorithm is used. In
addition to the current machine path, an "expectlist”" is maintained, consisting of states (sets,
clusters and leaf-states) that are to be expected. States that are expected at a shallower level
are put in nested lists.

© Graham G. Thomason 2003-2004 17



The following table illustrates this.

machine |expectlist un- |con- wrap |in-
path wrap |sume |rest sert
statechart s(a) [s] [a] no no no YES
set a(bb,cc,dd,ee, ff) [a,s] [bb,cc,dd,ee,ff] no YES |CANT |YES
cluster bb(bbl,bb2,bb3) |[bb,a,s] [bb1,bb2,bb3,[cc,dd,ee,ff]] [no YES |YES YES
state bbl [bb1,bb,a,s] [bb2,bb3,[cc,dd,ee,ff]] no YES |no no
state bb2 [bb2,bb,a,s] [bb3,[cc,dd,eeff]] no YES |no no
state bb3 [bb3,bb,a,s] [[cc,dd,ee,ff]] no YES |no no
cluster cc(ccl,cc?2) [cc,a,9] [ccl,cc2,[dd,ee,ff]] YES1 |YES |YES YES
cluster ccl (kkk) [ccl,ce,a,s] [kkk,[cc2,[dd,ee,ff]]] no YES |YES YES
state kkk [kkk,ccl,cc,a,s] |[[cc2,[dd,ee,ff]]] no YES |no no
state cc2 [cc2,cc,a,9] [[dd,ee,ff]] YES1 |YES |no no
state dd [dd,a,s] [ee,ff] YES1 |YES |no no
cluster ee(eel) [ee,a,s] [eed,[f]] no YES |YES YES
cluster eel(j33) [eel,ee,a,s] L, [IFF1) no YES |YES |YES
state j3jj liii,eel,ee,a,s] |[[[ff1]] no YES |no no
state ff [ff,a,s] 1] YES2 |YES (no no

Table 2.

Machine path processing example

The latter columns indicate something of the actions taken on the expect list as each state
statement is encountered. An unwrap operation may be required if the expected item is at a
shallower level; unwrapping could be required repeatedly. The unwrapping count indicates
how much of the machine path is to be removed. An item of the expectlist is consumed as the
expected state is found, except for the initial statechart statement. Sets and clusters, because
they introduce a deeper level, cause the existing expected items to be wrapped into a nested
list before appending of the new items.

18
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3.3 Syntax of declarations

The figures in this section show the syntax in a form that is close to the implementation.
Typical source examples are used to illustrate the parse.
The Prolog clause names correspond, but have a prefix "sy_".

type_declaration
Source example:

enum invalid text

Generic parse:

enum channels {14,..,19};
enum colour {red=6,blue,green=9};
enum $continent {europe, america, asial};

[typedecl,1 ok, [TAGEXPR,ENUMBODY] ]
[typedecl,l er,['**Error: type declaration: in enum']]

—» tag_expr ——m» enum_body —»

ype dedarationerror trap

absorbs to end of line

Figure 15. type_declaration

enum channels {14,..,19};

[typedecl,1 ok,
[[ex tag expr, [ex id,channels]],

[enumbody, 1l ok, [range,l ok, [14,19]1]1]11]]

enum colour
{red=6,blue,green=9};

[typedecl, 1l ok,
[[ex tag expr, [ex id,colour]],
[enumbody, 1 ok,
[valnams, 1l ok,
[[red, 6], [blue], [green,9]]]111]

enum $continent
{europe, america,
asia};

[typedecl, 1l ok,
[[ex_tag_expr,[[ex_monadic,mback],
[ex id,continent]]],
[enumbody, 1 ok,
[valnams,1 ok,
[ [europe], [americal, [asialllll]

enum #rubbish

[typedecl, 1 er,
[**Error: type declaration: in enum]]

Table 3.  Examples of parsing “type_declaration”

© Graham G. Thomason 2003-2004
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enum_body

Source example:
{14 .. 19}
{red=6,blue,green=9}
{erroneous text}

Generic parse:
[enumbody,1 ok,RANGE]
[enumbody,1l ok, VALUENAMES]
[enumbody,l er,['**Error: enum body: between braces']]

> range

| valuenames ——»

odv
\ um_boay
error trap

absorbs nested braces

D

Figure 16. enum_body

{14, ..,19}; [enumbody, 1 ok, [range,1l ok, [14,19]]]

{red=6,blue,green=9} [enumbody, 1 ok,
[valnams,1l ok, [[red, 6], [blue], [green,9]]1]]

{#rubbish} [enumbody, 1 er,
[**Error: enum body: between braces]]

Table 4.  Examples of parsing “enum_body”

20 © Graham G. Thomason 2003-2004



range

Source example:
{14,..,19}

{24,..,19} /* error */

Generic parse:

[range,l ok, [VAL1,VAL2]]
[range,l er, [VAL1l,VAL2, '**Error: range: lower .. higher']]

*@» integer *C, ..

, }» integer »@ﬁ%»

first integer

<= second
Figure 17. range
{14, ..,19}; [range,l_ok, [14,19]1]
{24,..,19}; [range, 1l er,
[24,19,**Error: range: lower .. higher]]

Table 5.

© Graham G. Thomason 2003-2004
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valuenames

Source example:
{red=6 ,blue,green=9}

Generic parse:

[valnams,l_ ok, [ [NAME,6VALUE] , [NAME,VALUE], ...]]
no error handler for this item

%@.

valname_entry—»| restvaluenames —»

combine
into a list
valuename_entry
Source examples:
green=9
red
Generic parse:
[valnament,l ok, [NAME, VALUE]
[valnament,1l ok, [NAME]
no error handler for this item
—» valuename T@i integer 7—»
identifier
restvaluenames
@—» valname_entry —»| restvaluenames
combine
into a list
Figure 18. valuenames
{red=6,blue,green=9} | [valnams,1 ok, [[red, 6], [blue], [green,9]]]

22

Table 6. Example of parsing “valuenames”
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Source examples:
bool flagl;

Generic parse:

var_declaration

xyztype xyzl = 6 + x , xyz2 , xyz3 =7 +y ;

Sxyztype $xyzl;
xyztype #rubbish;

[vardecl,1 ok, [VARDECLTYPE, VARDECLENTRY , VARDECLENTRY, . ..]]

var_decl_

—»
type

var_decl_ rest_
entry var_decl 7

type validity checking is performed by the validator

absorbs to end of line

Figure 19. var_declaration

bool flagl; [vardecl, 1 ok,
[
[vardecltype, 1l ok, [bool]],
[vardeclent,1l ok,
[[ex var expr, [ex id,flagl]]]]
1]
xyztype [vardecl, 1 ok,
xyzl = 6 + x , [
xyz2 , [vardecltype, 1l ok,
xyz3 =7 + vy ; [enumtype, [ex tag expr, [ex id,xyztypel]l],

[vardeclent,1l ok,

[[ex var expr, [ex id,xyzl]],
[ex expr, [[ex dyadic,dplus],
lex co,int,6], [ex_id,x]]]1]],

[vardeclent,1 ok,
[[ex var expr, [ex id,xyz2]]]],
[vardeclent,1l ok,
[[ex var expr, [ex id,xyz3]],
[ex expr, [[ex dyadic,dplus],
[ex_co,int, 7], [ex_id,y]1111]
1]

Sxyztype $xyzl;

[vardecl,1 ok,
[
[vardecltype, 1l ok,
[enumtype, [ex tag expr,
[[ex monadic,mback], [ex id,xyztypel]]l]],
[vardeclent,1l ok, [[ex var expr,
[[ex monadic,mback], [ex id,xyzl1]]1]1]]
1 1]

xyztype #rubbish;

[vardecl,1l er, [**Error: var declaration]]

Table 7.

Examples of parsing “var_declaration”

© Graham G. Thomason 2003-2004
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var_decl_type

Source examples:
bool
$colour

Parse example (1):
[vardecltype,l ok, [bool]]

Parse example (2):
[vardecltype,l_ ok, [enumtype, TAGEXPR] ]

where
TAGEXPR=[ex tag_expr, [ [ex_monadic,mback], [ex_id,colour]]]

bool

tag expression

\/

checking that the resultant tagname (enumtype) is known is performed by the validat

Figure 20. var_decl_type

bool [vardecltype, 1l ok, [bool]]

Scolour [vardecltype, 1l ok,
[enumtype, [ex tag expr,
[[ex monadic,mback], [ex id,colour]]]]]

Table 8.  Examples of parsing “var_decl_type”
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var_decl_entry

Source examples:
flagl
xyzl = 6+x
$xyzl

Generic parse:

e

valuenam

identifier

[vardeclent,1l_ ok, [ENTRY,EXPR]]
[vardeclent,1l_ ok, [ENTRY]]

expressio

gl

rest var_decl

j'@q

var_decl_entry —»| rest_var_decl

combine
into a list

Figure 21. var_decl_entry

flagl [vardeclent,1 ok,
[[ex var expr, [ex id,flagl]]]]
xyzl = 6+x [vardeclent,1l ok,
[[ex var expr, [ex id,xyzl]],
[ex expr, [[ex dyadic,dplus],
[ex co,int, 6], [ex id,x]]11]
Sxyzl [vardeclent, 1l ok,

[[ex var expr,
[[ex monadic,mback], [ex id,xyz1]]]]]

Table 9.

Examples of parsing “var_cecl_entry”

© Graham G. Thomason 2003-2004 25




pco_declarations

Source example:
pco pcol, $pco2;
pco #rubbish;

Generic parse:
[pcodecls,1l ok, [PCONAME, PCONAME, .. .])
[pcodecls,1l er,['**Error: pco declarations']]

4> pCO_expr —» pco_restnames W»

combine
into a list

pco declaration error trap

pco_restnames

‘>©—> pco_expr ———®»| pco_restnames

combine
into a list

Figure 22. pco_declarations

PCO pcol, $pco2; [pcodecls, 1 ok,
[
[ex pco_expr, [ex id,pcoll],
[ex pco_expr, [[ex monadic,mback],
[ex id,pco2]]]
11

PCO pcol, #rubbish; [pcodecls, 1l er, [**Error: pco declarations]]

Table 10. Examples of parsing “pco_declarations”
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event_decl

Source examples:
event alpha;
event alpha,beta;
event alpha,beta@pcol;
event alpha,$beta@$pcol;
event #rubbish ;

Generic Parse
[eventdecl,1 ok, [EVENTNAMES, PCO] ]

4’

event_expr —»

optional_pco
_expr

Figure 23. event_decl

event alpha; [eventdecl, 1 ok,
[[[ex evt expr, [ex id,alphalll, []]]
event alpha,beta; [eventdecl, 1 ok,
[
[ [ex evt expr, [ex id,alphal],
[ex evt expr, [ex id,betal]
1,
[]
1]
event alpha,betalpcol; [eventdecl, 1l ok,

[
[ [ex evt expr, [ex id,alphal],
[ex evt expr, [ex id,beta]]
1,
[ex pco_expr, [ex id,pcol]]

11

event

alpha, $Sbetal$pcol;

[eventdecl, 1 ok,
[
[ [ex evt expr, [ex id,alphal],
[ex evt expr,
[[ex monadic,mback], [ex id,beta]]]
1,
[ex pco expr,
[[ex monadic,mback], [ex id,pcol]]]

11

event

alpha, #rubbish;

[eventdecl,l er, [**Error: event declaration]]

© Graham G. Thomason 2003-2004

Table 11.

Examples of parsing “event_decl”
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event_names

Source example:
evl,ev2, $ev3

Generic parse:

[eventnames,l ok, [EVENTEXPR, EVENTEXFR, ...]]

—»| event_name

P

event_restnames

.

combine
into a list

event_restnames

event_names

Figure 24.

event_names (actually event scoping-expressions now)

opt_pco

Source examples:
@ pcol
@$pco2
null

Generic:

[opt_pco,1 ok, []]
[opt_pco,l1 ok, PCOEXPR]

pco_expr

T’

28

Figure 25. opt_pco
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3.4 Syntax of state and transition blocks

First we give the syntax in a non-feed-forward way, i.e. expressing repetitions by backwards
flow, as that is more compact and gives a better overview. Following this we give a
description of the constituent items in the order of their description. Finally the whole syntax
is described item by item in a purely feed-forward way.

statechart statement
statechart statechart state-
name name

identifier identifier

state statement

cluster state- - transition
—»( cluster }p histor > >
name name Y block A
identifier identifier dhistory

set state- - transition
set dhistor
( >* name name ook
identifier identifier
state state | transition
name block
identifier

history

dhistory

Figure 26. Overview (not feed forward) of statechart/cluster/set/state syntax

¢
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transition block
enter exit .
> »|transition
’ ( ) ' block T block T
enter block
action
block
exit block
action
transition
meta- o action label
Yy, »| condition »| route > > ‘
event [ j [ J { block) { block
if no route or action block, first square bracket must introduce a condition
meta event
.| event parameter ) g
" expression list J 7'y >
enter state_
expression
| state
expression

30

Figure 27. Overview (not feed forward) transition block syntax
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condition

boolean
expression

route
- | state - (| state
| expression 4 ") expression ’
ORBITAL STATE TARGET STATE
state expression state  expression
disallowing the split allowing the split
operator, "/\" operator, "/\"
- J
action block

) 4

expression
statement

event destination
EXpression parameter list
boolean action action
expression block block

label block

(e
N

—»@L label-name expression

identifier

Figure 28. Overview (not feed forward) of transition block syntax (continued)
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state

cluster/set/state name

statenames block

history block

transition block

enter block

exit block

transitions

meta events

......... extended state name (also used
elsewhere)
condition
route
action block

assignment action

event action

clear action

deepclear action

conditional action

label block

Figure 29. Overview of "'state" in order of description
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State

set

state
state
cluster p #rubbish

Source examples:
cluster p(x,d) deep history {alpha->d;beta->e;}

p(x,d)

X
X

Generic parse:
[state,1 ok, [cluster,
[state,1_ ok, [set,
[state,1l ok, [leafstate, STATENAME,

[state,l_er, ['**Error: state: cluster: NAME']]

{alpha->d;beta->e;}
{alpha->d ;beta->e;}

CLUSTERNAME, STATENAMES, HISTORY, Ol1TRBLK]
SETNAME ,

STATENAMES, O1TRBLK]
O2TRBLK] ]

// also applies to set

cluster statenames optl
—»(cluster = history | transition >
name block A
block
identifier
state: cluster
error trap
set statenames op_t}
L set ——— | transition
name block
- — block
identifie
state: set
error trap
opt2
\><state>—> State » transition ———————
name
block
identifier

Figure 30. State

From test

cluster a

[sc,sy,state,ssta, 6]

(b,c)

{ alp->bet; }

\

[oc state, 1l ok,

[cluster,a,CHILDREN, HISTORY, TRBLK]] 1],
CHILDREN=[statnamsblk,1 ok, [b,c]],
HISTORY=[history,1 ok, []],
TRBLK=[optltrblk,1l ok, [EN,EX,TR]],
TR=[transitions,l ok, [TR1]

cluster p(x,d)
deep history

[oc state,l ok, [cluster,p,
[statnamsblk, 1l ok, [x,d]],
[history,1l ok, [deephistory]],
[optltrblk,1 ok, []]1]]

state x;

[oc state,1l ok, [leafstate, x,
[opt2trblk,1 ok, []]1]]

cluster p #rubbish

[oc state,l er, [**Error: state: cluster p]]

Table 12. Examples of parsing “state”

© Graham G. Thomason 2003-2004
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statenames block

Source example:
(p,q,tuning)

Generic parse:
[statnamsblk,l ok, [STATENAME, STATENAME, . ..]]

rest

— statename —» -
statenames

combine
identifier into a list

_ statenames block
error trap

absorbs nested brackets

rest_statenames

statename —» rest_
statenames

identifier

combine
into a list

Figure 31. statenames block

(

a, bb) | [statnamsblk, 1 ok, [a,bb]]

34

Table 13. Example of parsing “statenames”
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history

Source examples:
deep history
history
null

Generic parse:
[history,1 ok, [deephistory]]
[history,l1 ok, [history]]
[history,1 ok, []]

4’
e

-

Figure 32. history

© Graham G. Thomason 2003-2004
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optl_transition_block

Source example:
see '"transition block"
null

Generic parse:
[optltrblk,l_ok, [ENTERBLOCK, EXITBLOCK, TRANSITIONS] ]
[optltrblk,1 ok, []]

transition block

Figure 33. optl_transition_block

Note: the above item
e transports the parse body of a transition block up one level

null [optltrblk,1 ok, []]
From test [optltrblk,1 ok, [ENTERBLK,EXITBLK, TRANSITIONS]] ],
[sc,sy,state,oltb,2] ENTERBLK=[enterblk,1 ok,ENTERACBLK],

EXITBLK=[exitblk,1 ok,EXITACBLK],
{upon enter {x=y;} TRANSITIONS=[transitions,l ok, [TR1,TR2].

\
upon exit{x=y;} \
alp->e; \

\

alpl[c==d]->e.f{x=y;}
[1k cost=6]; }

Table 14. Examplesof parsing “optl_transition_block”
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opt2_transition_block

Source example:
null

Generic parse:

[opt2trblk,l ok, [1]

see '"transition block"

[opt2trblk,1 ok, [ENTERBLOCK, EXITBLOCK, TRANSITIONS]]]

transition block

Fig

Note: the above item

ure 34. opt2_transition_block

e transports the parse body of a transition block up one level

’

[opt2trblk,1 ok, []]

From test
[sc,sy, state,oltb,2]

{upon enter {x=y;}
alp->e;

alpl[c==d]->e.f{x=y;}
[1k _cost=6]; }

\
upon exit{x=y;} \
\
\

[opt2trblk, 1l ok, [ENTERBLK,EXITBLK, TRANSITIONS] ]
ENTERBLK=[enterblk, 1 ok, ENTERACBLK],
EXITBLK=[exitblk,1l ok,EXITACBLK],
TRANSITIONS=[transitions,l ok, [TR1l,TR2].

1,

Table 15. Examples of parsing “opt2_transition_block”

© Graham G. Thomason 2003-2004
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transition block

Source example:
{ upon enter ACTIONS,
upon exit ACTIONS
TRANSITIONS }

Generic parse:

[trblk,l_ok,[ENTERBLOCK,EXITBLOCK,TRANSITIONS]
[trblk,1_ ok, ['Error: transition block']]

enter
block

exit
block

trans-
itions

- (D)

transition block error trap

at least one of
these three items
must be non-null

absorbs nested braces

Figure 35. transition block

From test
[sc,sy,state,trb,5]

{upon enter {x=y;} \
upon exit{x=y;} \
alp->e; \
alplc==d]->e.f{x=y;} \

[1k cost=6]; }

[trblk,1 ok, [ENTERBLK,EXITBLK, TRANSITIONS]] 1,
ENTERBLK=[enterblk, 1 ok, ENTERACBLK],
EXITBLK=[exitblk,1 ok, EXITACBLK],
TRANSITIONS=[transitions,1l ok, [TR1l,TR2].

Table 16. Examples of parsing “transition block”

38
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enter block

Source examples:
upon enter ACTIONS
null

Generic parse:
[enterblk,1l ok,ACTIONS]
[enterblk,1 ok, []]

T roer e

Figure 36. enter block

exit block

Source examples:
upon exit ACTIONS
null

Generic parse:
[exitblk,1l ok,ACTIONS]
[exitblk,1 ok, []]

T oo e

Figure 37. exit block

null [enterblk,1 ok, []]
From test [enterblk,1 ok,ACTIONBLK] ],
[sy,sc,enb,2] ACTIONBLK=[actionblk,1l ok, [ACTIONL1].

upon enter {x=y;}

Table 17. Examples of parsing “enter/exit block”

The parse of an exit block is analogous to that of an enter block.

© Graham G. Thomason 2003-2004
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transitions

Source example:
alpha[c==1]->b{d=2;}
null

Generic parse:
[transitions,l ok, [TRANSITION, TRANSITION, ...]]
[transitions,1 ok, []]

transition ——»| transitions

\J

combine into a list

Figure 38. transitions (zero or more)

From test [transitions, 1l ok, [TRN1,TRN2]] ],
[sc,sy, state,trns,2] TRN1=[transition, 1l ok,
[MEVS1,COND1,ROUTEL, ACBLK1, LABLK1] ],

alpha -> e ; \ MEVS1l=[metaevents, 1l ok, [EV1]],
alpha,enter (a.b) \ COND1=[condition,l ok, []],
[c==d] -> e.f \ ROUTEl=[route, 1l ok, [ORBITI1,DEST1]],
{x=y;clear(b);} \ ACBLK1l=[optactblk,1l ok, []],
[1k cost=6]; LABLK1=[labelblk,1 ok, []],

TRN2=[transition, 1l ok,

[MEVS2, COND2, ROUTE2, ACBLK2, LABLK2] ],
MEVS2=[metaevents, 1l ok, [EV21,EV22]],
COND2=[condition, 1l ok, [ex expr, 1]
ROUTE2=[route, 1l ok, [ORBIT2,DEST2]]
ACBLK2=[optactblk,1l ok, [AC21,AC22]
LABLK2=[labelblk,1 ok, [LAB21].

4

1,

Table 18. Example of parsing “transitions”
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transition

Source example:
alpha[c==1]->b{d=2;};
#rubbish;

Generic parse:

[transition,l ok, [EVENT,CONDITION,ROUTE,ACTIONS, LABELS]
[transition,l er,['**Error: transition'] // various varieties

meta

»condition

events

optional

- route

(route
and)
destinatio
state

opt_

|

optional

optional

transition error trap  —#>

transition error trap —#

=

transition emortrap |

action label @’
A
block block

Figure 39. transition

© Graham G. Thomason 2003-2004
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From test
[sc,sy,state,tran,1]

alpha,
enter (a.b)
[c==d] ->e.f->g.h
{x=y; clear (b); }
[1k cost=6,
1k time=-7];

~ s

[transition, 1l ok, [MEVS,COND,ROUTE, ACBLK, LABLK]] I,
MEVS=[metaevents,1 ok, [EV1,EV2]],
COND=[condition, 1l ok, [ex expr,EXPR]],
ROUTE=[route, 1l ok, [ORBIT,DEST]],

ACBLK=[optactblk,1l ok, [ACl,AC2]
LABLK=[labelblk,1 ok, [LABl,LAB2

1,
]

alpha, enter(a.b)

[transition, 1l er,

{x=y;clear (b);}
[1k cost=6,1k time=-7];

[c==d]->e.f->g.h [**Error: transition: invalid after label block]]
{x=y;clear (b);}
[1k cost=6,1k time=-7]
#trash;
alpha, enter(a.b) [transition, 1l er,
[c==d]->e.f->g.h [**Error: transition: invalid after action
{x=y;clear(b);} block]]
[1k cost=6,
1k time=-7/*1*/ ;
alpha, enter(a.b) [transition, 1l er,
[c==d]->e.f->g.h [**Error: transition: invalid after extended
#rubbish state route]]
{x=y; clear(b);}
[1k cost=6,1k time=-7];
alpha, enter(a.b) [transition, 1l er,
[c==d] [**Error: transition: invalid after condition]]
/*=>*/ e.f->g.h
{x=y;clear (b);}
[1k cost=6,1k time=-7];
alpha, enter(a.b) [transition, 1l er,
[c==d/*]*/ [**Error: transition: invalid after meta events]]
->e.f->g.h

Table 19. Examples of parsing “transition”

42
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metaevents (one or more)

Source examples:

alpha // one meta event
enter (a.b) // one meta event
exit ($$b) // one meta event
alpha, enter (a.b), exit (::b) // three meta events

Generic parse:

[metaevents,l ok, [METAEVENT ,METAEVENT, . ..]]

meta

—_— ——» rest_metaevents

event

\j

combine
into a list

rest_metaevents

meta

i : events

Figure 40. meta events

From test
[sc,sy,state,mevs,2]

Salpha(a.pl, $p2,p3), \
enter ( $Sa.b ), \
exit ( ::c.d )

[metaevents,1l ok, [ME1l,ME2,ME3]] ],
MEl=[metaevent,1l ok, [t event,1l ok,TEV]],
TEV=[EVTEXPR, TPARAMBLK],
ME2=[metaevent, 1l ok, [enter,XSTATEZ]],
ME3=[metaevent,l ok, [exit,XSTATE3].

Table 20. Example of parsing “meta events”

© Graham G. Thomason 2003-2004
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meta event

Source examples
Salpha (pl, Sa.p2)
enter (a.b)
exit(::)

Example parse:

[metaevent,1l ok, [EVT EXPR, TPARAMBLK] ]
[metaevent,l ok, [enter,STA EXPR]]
[metaevent, 1l ok, [exit,STA EXPR]]

transition-side event
(not to be confused with a fire-side event).

t_event

A
@ extended
state name

¥ »

\ 4

0 extended

state name

Figure 41. meta event

From test
[sc,sy,state,mev,1]

Salpha(a.pl, $p2,p3)

[metaevent,1l ok, [t event,l ok,TEV]] ],

TEV=[EVTEXPR, TPARAMBLK] ,
EVTEXPR=[ex evt expr, [[ex monadic,mback],

[ex id,alphalll],
TPARAMBLK=[tevt paramblk,l ok,

[ [ex var expr, [[ex dyadic,descend],

[ex _id,al, [ex_id,pl]]],
[ex var expr, [[ex monadic,mback], [ex id,p2]]],

[ex var expr, [ex id,p31]1].

From test
[sc,sy,state,mev,2]

enter ( $$Saa.bb )

[metaevent, 1l ok, [enter,XSTATE]] ],
XSTATE=[xstate, 1 ok,STAEXPR],
STAEXPR= [ex sta expr,
[ [ex monadic,mback],
[ [ex monadic,mback],
[ [ex monadic,mback],
[ [ex dyadic,descend],
[ex id,aal,
[ex id,bb] 111].

Table 21. Examples of parsing “metaevent”

44
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t_event

Source example

Parse:

Salpha (a.pl, $p2,p3)

[metaevent, 1l ok, [EVTEXPR, TPARAMBLK] ]

event expr

opt_tevt

paramblk

opt_tevt_paramblk

\

tev _
params 4
L0

A 4

J

tevparams
var-expr > rest >
g tevparams . .
evaluates to a name combine into a list
rest_tevparams
tev

params T

Figure 42. t_event

From test

Salpha(a.pl, $p2,p3)

[metaevent, 1l ok, [EVTEXPR, TPARAMBLK] ]

[sc,sy,state,tev,4] EVTEXPR=[ex evt expr, [[ex monadic,mback],

[ex id,alphalll,
TPARAMBLK=[tevt paramblk,l ok,
[ [ex_var_expr,[[ex_dyadic,descend],
[ex id,a], [ex _id,pl]]],
[ex var expr, [[ex monadic,mback], [ex id,p2]]],
[ex var expr, [ex id,p3]]

11

© Graham G. Thomason 20

Table 22. Example of parsing “t_event”

03-2004

45




extended state

Source examples:

$a%%b.p

Generic parse:
[xtate,1 ok,STATE EXPRESSION]

State
expression

Figure 43. Extended state

[xstate, 1 ok, [ex sta expr,
[ex_id,all]

[xstate, 1 ok, [ex sta expr,
[[ex monadic,mback], [ex id,a]]]]

[xstate, 1 ok, [ex sta expr,
[[ex monadic,mscope], [ex id,a]]l]]

[xstate, 1l ok, [ex sta expr,
[[ex dyadic,descend], [ex id,a], [ex id,b]]]]

o)
oo
a0
o

[xstate, 1 ok, [ex sta expr,
[[ex dyadic,dparent], [ex id,a], [ex id,b]l]]]

0
o)

oe
o©
o

[xstate, 1 ok, [ex sta expr,
[[ex monadic,mback],
[[ex dyadic,dparent], [ex id,a], [ex id,b]]]]]

46

Table 23. Examples of parsing “extended state”
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condition (optional)
Source example:
[Sc==1 && 'in($a)]
[#rubbish]
null

Generic parse:
[condition,l ok, [ex expr,EXPRESSION] ]
[condition,l er,['**Error: condition']]
[condition,1l ok, []]

> boolean expression ®ﬁ‘—>

condition
error trap

absorbs nested
square brackets

\\¥>» [
Q do not allow a successful

null condition cut,fail

Figure 44. condition (optional)

[Sc==1 && !in($Sa)] [condition,1l ok,
[ex expr,
[[ex dyadic,land],
[[ex dyadic,eq],
[[ex monadic,mback],
[ex id,c]],
[ex _co,int,1]],
[[ex monadic, lnot],
[[ex dyadic, fcall],
[ex id,in],
[[[ex monadic,mback],
[ex_id,allllll]]

[#rubbish] [condition,l er, [**Error: condition]]

null [condition, 1l ok, []]

Table 24. Examples of parsing “condition”
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route
Source example

null // allows for actions only
-> c.d. (e/\f.qg) // destination only, /\ allowed
->a.b->c.d. (e/\f.qg) // orbit and destination

Generic parse:
[route, 1l ok, [[],[]]]
[route,1l ok, [[],DEST]]
[route, 1 ok, [ORBIT,DEST]]

__® xstate _,® »| Multi_xstate
A - A

y

v

state expression state expression
disallowing the allowing the split
split operator, operator, "/ \"
Il/ \Il

N /

Figure 45. route

opt_destination

Source examples:
->a.b
null

Generic parse:

[optdest.1l ok,XSTATE]
[optdest,1 ok, []]

extended
state }

Figure 46. opt_destination

->a.b [route,1l ok, [[], [xstate,1 ok, [ex sta expr,
[[ex dyadic,descend], [ex id,a], [ex id,b]]]]1]]

48 © Graham G. Thomason 2003-2004



->a.b->c.d

[route, 1 ok,
[ [xstate,l ok, [ex sta expr,

[[ex dyadic,descend], [ex id,a], [ex id,b]]]],
[xstate, 1 ok, [ex sta expr,

[[ex dyadic,descend], [ex id,c], [ex id,d]]]]1]]

Table 25. Examples of parsing “route”

© Graham G. Thomason 2003-2004
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null

Generic

Note:

{ #rubbish}

opt_action_block

Source example:
{at+=b+c; fire alpha; if (a>b) {c=d;} else {e=f;}}}
// trapped at action block level

parse:

[optactblk,l ok, [ACTION,ACTION,ACTION,...]]
[optactblk,l er,['**Error: action block']]
[optactblk,1l ok, []]

The parse does not add a parsing level; it transports the LSTATUS and PARSE of
action block to its own LSTATUS and PARSE.

action
block

\/

@ =:ﬁ ;;3
cut,fail

Figure 47. opt_action_block

From tes

[sc,sy,state,oacb,1]

{ x += 3

t

i}

[optactblk,1 ok, [ACTION1]] 1],
ACTIONl=[action,l ok, [action as,l ok,EXPR1]],
EXPR1=[ex expr, [[ex dyadic,asplus], [ex id, x],

[ex co,int,3]].

null

[optactblk,1 ok, []]

{ #rubbish }

[optactblk,1l er, [**Error: action block]]

50

Table 26.

Example of parsing “opt_action_block”
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action block

Source example:
{ #rubbish}

Generic parse:

[actionblk,l ok, [ACTION,ACTION,ACTION,...]]
[actionblk,l er,['**Error: action block']]

actions

{at+=b+c; fire alpha; if (a>b) {c=d;} else {e=£f;} }

one or more

action bl

error tra

absorbs nested braces

(D)

Figure 48. action block

Note: action block parse information is transported to an opt_action block.

From test
[sc,sy,state,acb,4]

{ x += 3 ; \
deep clear ( aa ); }

[actionblk,1l ok, [ACTION1,ACTION2]] ],
ACTIONl=[action,l ok, [action as,l ok,EXPR1]],
EXPR1=[ex expr, [[ex dyadic,asplus],
[ex id,x], [ex co,int,3]]],
ACTION2=[action,l ok, [action as,l ok,
[ex expr, [[ex dyadic, fcall],
[ex id,deep clear], [[ex _id,aall]l]].

Table 27. Example of parsing “action block”
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actions

Source example:
at+=b+c; fire alpha; if (a>b) {c=d;} else {e=f;}

Generic parse:

[actions,1l ok, [ACTION,ACTION, ...]]

— > action ——» rest_actions ﬁ{;»
combine
into a list
rest_actions
actions

-

-

Figure 49. actions

Parse examples can be seen nested within the opt_action_block parse examples.
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action

Source example:
a+=b+c;
fire alpha;

if (a>b) {c=d;} else {e=f;}

Generic parse:

[action,l ok,SPECIFIC_ACTION]

actio

assighment

n

boolean

orinteger

fired event
action

b conditional

action

Figure 50. action

An earlier version of STATECRUNCHER included clear and deep_clear actions (to clear
history). These are now implemented as standard functions.

at+=b+c;

[action, 1l ok, [action as,l ok,
[ex expr, [[ex dyadic,asplus],
[ex id,al,
[[ex dyadic,dplus],
[ex id,Db]l, [ex 1id,c]111]1]

From test
[sy,sc,state,ac, 3]

fire alpha ;

[action,1l ok,E]],
E=[action ev,1l ok, [[param ev,1 ok,
[[ex evt expr, [ex id,alphall,
[evt paramblk,l ok, []1]]1]].

if (a>b)
{c=d;}

else
{e=f;}

[action, 1l ok, [action co,1 ok,
[[ex expr,
[[ex dyadic,gt],
[ex id,a], [ex id,b]]],
[[action, 1l ok, [action as,1l ok,
[ex expr, [[ex dyadic,assign],
[ex id,c], [ex_id,d]]]1]1],
[[action, 1l ok, [action as,1l ok,
[ex expr, [[ex dyadic,assign],
[ex_id,e], [ex_1d,£f]11111117]

Table 28. Examples of parsing “action”
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assignment action

Source example:
a+=b+c;

Generic parse:

[action_as,l ok,ASSIGNMENT EXPRESSION]

assighment
expression

validation of boolean or integer
assignment type compatibility

54

Figure 51. assignment action
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fired event action
Source example

Example parse:

where

fire alpha, Sbeta (fl (fpl, $fp2),$$p2),gamma () ;

[g ok, [action ev,1l ok, [El,E2,E3...]]]

E2=[param ev,1l ok, [EVEXPRZ,PBLK2]],
EVEXPR2=[ex_evt expr,EVT EXPR],
PBLKZ2=[evt paramblk,l ok, [P1,P2]],
Pl=[ex expr,EXPR1],
P2=[ex expr,EXPRZ]

param |
events

param_events

param

param_

event

restevents

[
»

combine into a list

param_restevents

param

events |

Figure 52. fired event action
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param_event

Source example
Sbeta (fl (fpl, $fp2), $5p2)
Example parse:
[param ev,1l ok, [EVEXPRZ,PBLKZ2]]
where
EVEXPR2=[ex evt expr,EVT EXPR],
PBLK2=[evt paramblk,l ok, [P1,P2]],
Pl=[ex expr,EXPR1],
P2=[ex expr, EXPR2]

event expr > opt_event
paramblk

opt_evt_paramblk

OO
params

(-0

-

Y

ev_params

r
evt_expr o rest R

evparams o ]
combine into a list

rest_evparams

ev

para%s T

Figure 53. param_event
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conditional action

Source example:

if (a>b) {c=d;} else {e=f;}

Generic parse:

[action_co,l ok, [CONDITION,IFACTIONS,ELSEACTIONS] ]

»@»@» expression

boolean

action
-
@’ block | >

else
part

optional

Figure 54. conditional action

else part

Source example:
else {e=f;}
null

Generic parse:

[elsepart,l ok, [ACTION,ACTION,...]

[elsepart,l ok, []]

action
block

T’

.-

Figure 55. else part

© Graham G. Thomason 2003-2004
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label block (optional)

Source examples:
[keyl=23,6key2=xyz, key3=3.56]
[#rubbish ]

null

Generic parse:

[labelblk,l1 ok, [LABEL,LABEL,...]]

[labelblk,l er,['**Error: label block']]
[labelblk,1 ok, []]

Y

labels

Figure 56.

label block

[1k time=- 7, 1k cost=6] [labelblk,1 ok,
[ [label,1 ok, [1k time,
[ex expr,
[[ex monadic,mminus], [ex co,int,7]]1]],
[label,1 ok, [1k cost,
[ex expr, [ex co,int,6]]]1]1]
[1k time=- 7, #rubbish] [labelblk,1l er, [**Error: label block]]
Table 29. Examples of parsing “label_block”
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labels
Source example:
keyl=23,key2=xyz,key3=3.56

Generic parse:
[labels,1 ok, [LABEL,LABEL,...]]

—» label » rest_labels

combine into a list

\J

rest_labels

\J

labels

.

Figure 57.

© Graham G. Thomason 2003-2004
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label

Source example:
keyl=23

Generic parse:

[label,l ok, [LABELKEY,LABELRHS] ]

labelkey

identifier

4@.

labelrhs

labelrhs

Source examples:
identifierl

23
-23.45

Generic parse (in all cases):
[labelrhs,1l ok, [ex expr, EXPRBODY] ]

expression

[ -
|

must satisfy constraints

constraints

expression must be one
of the following:

* identifier

e unsigned integer

e signed interger

e unsigned real

e signed real

Figure 58. label
labelrhs type example parse
identifier highcost [ex expr, [ex id,highcost]]
unsigned integer 23 [ex expr, [ex co,int,23]]
negated integer -23 [ex expr,
[ [ex monadic,mminus],

[ex co,int,23]]]
unsigned real 23.34 [ex expr, [ex co,real,23.45]]
negated real, -2.34E-3 [ex expr,

(exponent
notation)

[ [ex monadic,mminus],
[ex co,real,0.00234]]]

Table 30. Constraints: Examples of permissible expression signatures for labels
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4. EXpressions

4.1 Categories of expression

STATECRUNCHER Syntax contains three categories of expression:
e Arithmetic expressions

e Scoping expressions

o Mixed expressions

Arithmetic expressions yield a numerical result; logical terms are represented numerically.
Strings terms if implemented in a future version, can be regarded as a data type and so belong
in the category of arithmetic expressions.

Scoping expressions yield the name of an item; the item may be a data variable or some other
entity (tag, PCO, event, state).

In principle, arithmetic expressions and scoping expressions are separate concepts. Apart
from mixed expression requirements, they could even use the same symbols for different
operations. However, in STATECRUNCHER, arithmetic and scoping operators are distinct. A
second fundamental difference is that the evaluation of a (sub-)expression depends on
whether it is to be regarded as an arithmetic expression or a scoping expression. Arithmetic
expressions yield a value; scoping expressions yield a name.

Mixed expressions arise because

e arithmetic expressions may include scoping operators, e.g. $x+y, where $ alters the
scope of x.

e arithmetic expressions may include special functions that take a scoping-expression
argument, e.g. in(a.b). The meaning of this is to test whether the state denoted by a
relative path a.b is currently occupied. It is a boolean term, but the argument to the
function is a scoping expression that requires evaluation to a state name, not a numerical
value. The function in then examines whether the state is occupied. We see that the
function in () takes a different kind of argument to arithmetic functions, and it is
evaluated in a fundamentally different way.

GP4 supports parameterization of expressions in that it allows an operator set to be specified
for use with the parse of any particular expression. Purely scoping expressions can be parsed
using an operator set that only contains scoping operators. How should mixed expressions be
parsed?
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One solution would be to parse a mixed expression in a way that labels which parts are
arithmetic and which parts are scoping expressions. However, this would require a special
expression parser, which would know when to expect which kind of (sub-)expression within
an expression. This could be done, but it would mean working with a variant on the ordinary
GP4 expression parser. By default, there is in general no direct way to support mixed
expression parsing of an expression such as

flagl && 'in(a.b) || flag2

An alternative approach, (the one taken), makes use of the fact that in STATECRUNCHER,
arithmetic expressions always allow scoping operations as well, so one combined operator set
includes arithmetic and scoping operators. Purely scoping expressions also occur, and these
just use their own operator set. Mixed expressions are parsed as just one kind of expression,
which we could call "extended-arithmetic". Scoping (sub-)expressions will be recognized at
evaluation time.

The way the in () example is handled in STATECRUNCHER is that the expression is parsed as
though in () were a regular function call, but its evaluation handler traps the call to it at the
dyadic f£call operator level. This is in contrast to regular functions, which are handled by
the generic £call handler which evaluates the arguments, looks up the name of the Prolog
implementation predicate, and calls it with those arguments.

The parse of the above example is :

[ex expr,
[[ex dyadic,lior],
[[ex dyadic, land],
[ex id, flagl],
[ [ex monadic, lnot],
[[ex dyadic, fecall],
[ex id, in],
[[[ex dyadic,descend],
lex_id,al, [ex_id,b]111111,
[ex id, flag2]]]
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If we examine what the £call handler does when provided with function in, compared with
the handler for a regular function, such as maximum, we have the following picture,
revealing the differences:

fcall fcall
in parameter list maximum  parameter list
[P1] [P1,P2,P3]
evaluate parameter as a evaluate parameters as
scoping expression and arithmetic expressions and
supply name to £i_in supply values to
fi maximum

Figure 59. Handling fcall

4.2 Operator set customization

The GP4 expression parser parses expressions without regard to type compatibility, so no
distinction is made between a boolean expression and an integer expression on the initial
parse. It is left as a task for a validator to ensure that the result of an expression is of the
required type. The validator may also ensure that the operators used in the expression are
acceptable in the places where they occur, if there are restrictions on this.

However, the GP4 expression parser can be tailored to an expression in various ways:
e Specifying the operator set with which to work.
e Specifying the starting operator precedence level.

The following operator sets have been defined for STATECRUNCHER

operator set purpose

e numeric, boolean and scoping operators

sch RESERVED for boolean operators only

sct operators for specifying taghames

scv operators for specifying variable names

scp operators for specifying PCOs

sce operators for specifying events

SCS operators for specifying states

additional sets reserved e.g. for transition description expressions (which are
currently implemented without using operators)

Table 31. Operator sets for STATECRUNCHER
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STATECRUNCHER operator precedence levels have been standardised as follows:
level 1: The lowest level. This is used for the comma operator

level 2: The level of assignment operators

level 3+: Other operators

This gives the following useful variations on starting operator precedence level:
e |evel 1: all operators are active, including the comma

e level 2: the comma operator is not active

o level 3: the comma and assignment operators are not active

4.3 Arithmetic operators

The following operators are supported at a parsing level; those not implemented in version 1.0
at an execution level are marked as such.

Operation Symbol Definition parameter (as per GP4) Executn.
support?

Primary Suffixes

Array indexing [] [op,18, [f,argi], sgbr]
[op,18, [continued], sgbr]

Function call 0 lop,17, [f,argl], fcall]
[op,17, [continued], fcall]

Various monadic

plus + [op,16, [f,y],mplus]

minus - [op,16, [f,y],mminus]

logical not ! [op,16, [f,y],1lnot]

post increment [op,16, [y, f],postinc]

post decrement [op,16, [y, f],postdec]

pre increment [op,16, [f,y],predinc]

pre decrement [op,16, [f,y],predec]

Multiplicative

multiplication * [op, 15, [y, £,x],xmul]

division / [op,15, [y, f,x],xdiv]

modulo % [op,15, [y, f,x],mod]

Additive

addition + lop,14, [y, f,x],dplus]

subtraction - [op,14, [y, f,x],dminus]

Shifting
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arithmetic shift right >> [op,13, [y, f,x],asr] No

arithmetic shift left << [op,13, [y, f,x],asl] No

Relational

less than or equal <= [op,12, [y, £,x],1e]

greater than or equal >= [op,12, [y, f,x],gel

less than < l[op,12, [y, f,x],1t]

greater than > lop,12, [y, £,x],qgt]

equal == lop, 11, [y, £,x],eq]

not equal 1= [op, 11, [y, f,x],nel

Bitwise

bitwise and & [op, 10, [y, f,x],band] No

bitwise xor ~ l[op, 9, [y, f,x],bxor] No

bitwise eqv ~N [op, 9, [y, f,x],beqv] No

bitwise incl or [op, 8, [y, f,x],bior] No

Logical

short-circuit and & lop, 7,ly,£f,x],land]

xor AN [op, 6,[y,f,x],1lxor]

equivalence | AA lop, 6,[y,f,x],leqv]

short-circuit or | [op, 5, [y, f,x],lior]

Arithmetic conditional

arithmetic if ? lop,3, [x,f,%,9,y],aif] No
[op, 3, [continued],aif]

Assighment

assign = [op,2, [x,f,y],assign]

exponentiate-assign * k= [op, 2, [x,f,y],aspwr] No

multiply-assign *= [op,2, [%,f,y],asxmul]

divide-assign /= [op,2, [%,£f,y],asxdiv]

modulo-assign %= [op,2, [x,f,y],asmod]

add-assign += [op,2, [%,f,y],asplus]

subtract-assign -= [op,2, [x,f,y],asminus]

bitwise-and-assign &= [op,2, [%,f,y],asband] No

bitwise-xor-assign N= [op, 2, [x,f,y],asbxor] No

bitwise-equiv-assign I h= l[op,2, [x,f,y],asbeqgv] No

bitwise-incl-or-assign | = [op, 2, [x,£f,y],asbior] No
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arith shift right assign >>= [op,2, [x,f,y],asasr] No
arith shift left assign <<= [op,2, [x,f,y],asas]] No
Sequence

sequence , [op,1, [y, f,x],seq] No

66

Table 32. Arithmetic operators
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4.4 Scope and scoping operators

Lucas [CHSM, p.21] describes how CHSM state names are specified. The following figure
illustrates non-local transitions

o TG

./av o\

™ ),

Figure 60. Non-local transitions

Lucas describes three ways to specify the destination state of an "out-scoping™ transition (my
terminology), such as the transition on event o, in the above figure.

e Absolute scoping i:p.a
e Back-out scoping: ..a
e Back to parent scoping .p-.a

The exact semantics of the operators in the third example are not given.

Lucas does not explicitly describe how to specify the destination state of an "in-scoping"
transition such as the transition on event B in the figure. However, from examples (e.g.
[CHSM, p.24] cluster Display, a transition to NotTime.Counter), it appears that our
example would be

beta->p.x.a
However, this shares its operator symbol with respect to out-scoping specification.
We reconsider the scoping issue, offering as much flexibility as is practicable, since it is

anticipated that scoping will play an important part when state models of subsystems are
combined into higher-level system models.
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Design of scoping operators

The above discussion leads us to design some operators to unambiguously cover all the
functionality described by Lucas. We desire individual operators for

e back-out one level

e back-out to a named parent

e Dback out to the outermost level

e enter one named level

Before designing these operators, we recall that scope is already present by default. PCO's,
events, tagnames and variables can be declared at any level in the machine hierarchy, e.g.

statechart sc(p)
PCO pcol;
event alpha@pcol;
enum colour {red=1l,green=3,blue=4};
colour mycolour=red;

cluster p(q)
PCO pcol;
event alpha@pcol;
enum colour {red=1l,green=3,blue=4};
colour mycolour=red;

cluster gl(a,b)
PCO pcol;
event alphalpcol;
enum colour {red=1,green=3,blue=4};
colour mycolour=red;

state a ;
state b ;

Although various names have been used repeatedly in this example, this is permitted because
each item has a scope associated with it. The variable mycolour has a scope associated with
it in two ways:

e Itis defined in a certain scope

e Its type contains the scope of the tagname used in the variable declaration.

When an item is accessed, the most local item found is taken as the one intended. An outward

search takes place to locate the item at successively more global levels if the item is not found
at a local level.
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4.4.1 Scoping operators - general design

Various items in STATECRUNCHER can be declared or accessed outside their natural scope by
means of scoping operators. These operators can be used to form scoping expressions.

The operators (with their implementation names) are:

e S (mback) back out one level from the current scope
* 33 (dparent) back out to a named parent

o :: (mscope) back out to the outermost level

o . (descend) enter one hamed level deeper

4.4.2 The mback operator *'$"

This is a monadic operator. The term "$a" means: "a" as it would be accessed if addressed in
the hierarchical state one level more global than the current one. This operator is right
associative, so "s$S$a" takes us back three levels.

4.4.3 The dparent operator ""$%"
This is a dyadic operator. The term "a%%b" means: back out of the current level until a

hierarchical machine named "a" is found. At least one level is always backed out. Then
address "b" in that level. The operator is right associative, so that the expression "a%%b%%c"

reads: back out to level "a", then back out from there to level "b", and evaluate "c" in that
scope.

4.4.4 The mscope operator ™ : : ™
This is a monadic operator. The term ": : a" means: address "a" at the statechart level.

4.4.5 The descend operator ™.
This is a dyadic operator. The term "a.b" means: enter the immediately deeper hierarchical

level "a" and address "b" in that scope. The operator is right associative, which means that

the expression "a.b. c" reads: enter "a", then "b" and address "c" in that scope.

4.4.6 Combining scoping operators
The monadic and dyadic operators combine with dyadic operations binding tighter.

4.4.7 Effect of scoping operators on declarations
Scoping operators can be used when accessing (rather than declaring) any item, i.e. PCO's,
events, tagnames and variables and states.

Scoping operators can be used in declarations of PCQ's, events, taghames and variables (but
not states). They have the effect of declaring the item as if it were an ordinary declaration in
another part of the hierarchy. For example, to declare various items as if they all belonged one
level up in the hierarchy:

PCO S$pcol;

event $alpha;

enum S$colour {red=1,green=3,blue=4};

Scolour Smycolour;
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In the variable declaration

Scolour Smycolour;
the variable has a scope determined by its own scoping expression, and a type affected by the
scoping expression on its tagname.

These operators should be composable into a scoping expression. We need to select
e operator symbols

and facilitate expression building by our choice of:

e operator precedence

e operator associativity

Before selecting these operator properties, it is good to realise that there is a major difference
in the way scoping operators work compared with, say, arithmetic operators. Arithmetic
operators apply their own operation after evaluating their arguments (which latter they do by
a recursive call to the evaluator). For example, a simplified predicate to evaluate the monadic
minus operation on a parameter P1 might be:
ev_expr (MPATH, [ [ex monadic,mminus],P1l],V):-
ev_expr (MPATH,P1,VV), /* evaluate argument */

VV=[ex co,TYPE,K], /* analyse evaluation */
KK is -K, /* operator's own action */
V=[ex co,TYPE,KK], /* set up return value */

' .

Note that P1 is evaluated by a recursive call before the negation takes place (KK is -K).

Similarly for dyadic operations (simplified):
ev_expr (MPATH, [ [ex dyadic,dminus],P1l,P2],V) :-

ev_expr (MPATH,P1,VVl), /* evaluate Pl */

ev_expr (MPATH, P2,VV2), /* evaluate P2 */

VVl=[ex co,T1,K1], /* Tl=type, Kl=value */
VV2=[ex co,T2,K2], /* T2=type, K2=value */
KK is K1-K2, /* operator's own action */
ev_gtype (T1,T2,TT), /* get most general type */
V=[ex co,TT,KK], /* set up return value */

.

In these predicates, MPATH is the machine path (i.e. scope) in which the evaluation takes
place. Termination of the recursion takes place at a terminal item, such as an identifier (whose
value is then obtained from a table or database).
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Now when it comes to scoping operators, they must perform their own operation - i.e.
changing the scope - before evaluating their arguments. It will be seen that this has
implications for the choice of precedence and associativity. Here is what the back-out
operator does
ev_expr ([HMPATH|TMPATH], [ [ex monadic,mback],P1l],V) :-
ev_expr (TMPATH, P1,V), /* remove head of machine path */
|
The predicate first modifies the supplied machine path. It effectively removes the head of a
list describing the machine path, the head being the most local part of the path. Then it
performs the recursive call to have its parameter, P1, evaluated in the new scope.

Similarly, for a dyadic scoping operator. The following operator takes its first argument (P1)
as a required addition to the machine path, so as to make the scope more local. The second
argument (P2) is then evaluated recursively in the new scope.

ev_expr (MPATH, [ [ex dyadic,descend],Pl,P2],V) :-

Pl=[ex id, ID], /* ID = desired extension */
MPATH2=[ID|MPATH], /* extend the machine path */
ev_expr (MPATH2,P2,V), /* recursive evaluation */

We now tabulate the operators implemented:

Operator Operator definition Input Input Action
syntax [op, prec, assoc, name] argument | argument
1 2
Sargl [op,19, [f,y],mback] misc. n/a evaluate argl in the new
scope, which is backed-out
one level.
:rargl [op,19, [f,y],mscope] misc. n/a evaluate argl in the new

scope, which is at the
outermost level.

argl.arg2 |[op,20,[x,£f,v], machine | misc. evaluate arg2 in the new
descend] path scope, which enters level argl
element w.r.t the current scope
argl [op, 20, [x,f,v], machine | misc. evaluate arg2 in the new
$%arg?2 dparent] path scope, which backs out one
element level anyway, and then as far

as the first occurrence of
machine path element argl.

Table 33. Scoping operators

Note that the "." (descend) and "%%" (dparent) operators are right associative. This means
that an expression such as

aa.bb.cc.dd
is equivalent to

aa. (bb. (cc.dd))
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Bearing in mind the reasoning about scoping operators performing their operation before
evaluating their arguments, the above expression will behave as follows:

- add aa to the machine path, making it one level deeper than the caller's level

- add bb to the machine path, making it one level deeper than as above

- add cc to the machine path, making it one level deeper still

- evaluate dd in this new scope

Similarly

aa%ssbb%sccs%sdd
will evaluate dd in the scope that backs out to the first occurrence of aa (cutting blindly
through bb's and cc's if they occur), then backs out further to the next occurrence of bb
(cutting blindly through cc's if they occur), then backs out further to the first occurrence of
cc, and finally evaluates dd in this scope.

Similarly, the ": :" (mscope) and monadic "$" (mback) operators are right associative. This
means that expressions consisting of multiple monadic operators can be composed simply:
$SSaa
which is equivalent to
$(S(saa))
backs out three levels then evaluates aa.

The expression

::%aa
backs out to the outermost shell, then backs out one more level (which in STATECRUNCHER
v1.0 is admissible, as the " : : " operator backs out to the statechart level, from which it is

possible to back out once more to the absolute level.

The expression

$::aa
would normally be pointless, as it backs out one level before performing a global back-out
operation.

These monadic and dyadic operators combine with dyadic operations binding tighter, so that
$Saa.bb.cc
which is equivalent to
$($(aa. (bb.cc)))
means back out two levels, then enter aa then enter bb then enter cc. The rule is emerging
that the expression is to be interpreted as a sequence of actions in left-to-right reading
order.
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One consideration is that dyadic operators have a higher precedence than monadic ones,
which is fine for expressions such as

$Saa.bb.cc
but it means that brackets are needed for adjacent dyadic-monadic accumulations, e.g.

cc%% ($sdd.var2)
which is to be read as: back-out to parent cc, then back out twice more, then descend into dd,
then evaluate var2 in this scope.

Scoping operators have a higher precedence than non-scoping ones. An example of a
combined expression, extending the above example, is:

varl + cc%%($$dd.var?2)
which is to be read as: evaluate var1, back-out to parent cc, then back out twice more, then
descend into dd, then evaluate var2 in this new scope, then finally add together with the
evaluation of varl.

Adjacent expressions
A constraint on the choice of operator symbols is that if two expressions follow in succession,
they should not be accidentally parsable as one expression. This situation could arise in
variable declarations, where the tagname and variable name are both scoping expressions.
This makes it impossible to select the dot "." for the mback operator, because then the
declaration

.colour .mycolour =red;
would cause a parse of the tagname as

.colour.mycolour

and no variable name would be found.

Another alternative for the mback operator that was considered is "@". This would be
possible, but it would be confusing in event declarations such as
event alpha@@pcol;

The choice of "$" has advantages and disadvantages

e advantage: it is a single symbol, which reads well in expressions such as $$Svarl.

e advantage: it is not in use nor is it a candidate for alternate use as an operator.

o disadvantage: some systems allow the $ in identifier names, typically as an extension to
C-style names for system variables. STATECRUNCHER could still accommodate this, but
mback operations would require white space: $$$ Svar?2.

Other symbols considered were

o "\" (backslash). In Windows path names, this is more like the descend operator. In "C" is
it used to start octal digits, although this would not appear to clash. In STATECRUNCHER,
the backslash is at the end of a line is currently a line-continuation character.

o "#" (hash). In "C" macros it is used as a string producer. A double hash is used for token-
pasting.
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e "~" (caret). This has the advantage of reading well ("go up"). In "C" it is the dyadic
bitwise-or operation, and it may be wise to keep this operator available to
STATECRUNCHER.

4.5 Items parsed as expressions

The following items are expressions:

e Tagnames in declaration (enum statement) / usage (variable declaration)

e Variables in declaration / usage (e.g. initialization, condition, action, label)
e PCO'sin declaration / usage

e Events in declaration / usage

e States in usage (“declaration” is determined by the machine hierarchy)

This means that there is opportunity to access, and even define, items either less locally or
more locally than the current scope.

Tagnames, variables, PCOs and events of a more global scope are implicitly in scope, unless
masked by a more local homonym.

States must always be specified precisely, except that the "back to parent” operator will
search for a parent state.

It is recommended that non-local scoping should be used sparingly, especially non-local
declarations. In any case exceptional scoping should not be used gratuitously, but only when
composition of subsystem models requires it.

We now discuss the semantics of scoped expressions.

Let us first define a machine context for the expressions to be considered in the following
subsections; we take machine path sc.p.q.r.s

statechart sc

= N
o 8

S

expressions t @
here @

> v,

Figure 61. Scoping example
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Note: the internal representation of machine path se.p.q.r.s is [s,r,p,q,sc]. Inthe
examples that follow, the se.p.q.r.s style notation has been used, including in symbol
table entries. This format may differ in representation from what is output by the
STATECRUNCHER software.

In the following discussions, we will use the $ operator as a typical scoping operator; it
defines a machine path that is one level shallower than the current machine path. The effect of
a scoping expression is best illustrated by reference to the symbol table entry. All
STATECRUNCHER symbol table entries are of the form

symbol, machine-path, type, value

The machine-path is the effective level at which the symbol is defined. There can be several
identical symbols with different machine paths. The symbol that is actually referred to in any
context is the "nearest" one working outwards from the current machine path.
4.5.1 Tagname declarations
Tag declarations are used to define ranges and enumerators:
Syntax
enum tagexpression {integer,..,integer};
enum tagexpression {enumerator-list};
Examples

Suppose in the above-mentioned machine context (sc.p.qg.r.s) we have

enum busroutes {112,..,118};
enum colour {red,green=3,blue};

Without the use of any scoping operators, these tagnames and enumerators are entered in the
symbol table as follows

name machine path type value
busroutes sc.p.g.r.s [typedecl, range] [112,118]
colour sc.p.qg.r.s [typedecl, enumerated] [0,3,4]
red sc.p.g.r.s [enumerator, colour] 0

green sc.p.g.r.s [enumerator, colour] 3

blue sc.p.g.r.s [enumerator,colour] 4

Table 34. Unscoped tagnames in symbol table
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Now the effect of a scoping expression on the tagname is to define a new machine path for

e the tagname
e the enumerators

Scoping operations are not permitted on enumerators in a tagname declaration.

Examples
enum S$busroutes {112,..,118};
enum S$colour {red,green=3,blue};

name machine path type value
busroutes sc.p.q.r [typedecl, range] [112,118]
colour sc.p.q.r [typedecl, enumerated] [0,3,4]
red sc.p.q.r [enumerator,colour] 0

green sc.p.qg.r [enumerator,colour] 3

blue sc.p.qg.r [enumerator, colour] 4

Table 35. Symbol table entries for scoped tagnames

Note the difference in machine path due to the $ operator.

4.5.2 Variable declarations
A variable declaration specifies the type:

Syntax
typeexpression variableexpression;

typexpressione variableexpression = expression;

bool variableexpression;
bool variableexpression = expression;

Examples
busroutes myroute = 115;
colour my tie col =red;
busroutes yourroute = myroute +1;
bool bl = true;

We ignore the issue of type compatibility of "myroute +1" for the moment.

Whether or not the declarations of the tagnames are in the same machine context as these
variable declarations, these variables are entered in the symbol table as follows:
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name machine type value
path

bl sc.p.d.r.s [vardecl, [bool] true

myroute sc.p.d.r.s [vardecl, [enumtype, [route, [sc.p.g.r.s]]]] 115

my tie col sc.p.q.r.s [vardecl, [enumtype, [colour, [sc.p.g.r.5]]11]1] 0

yourroute sCc.p.g.r.s [vardecl, [enumtype, [route, [sc.p.g.r.s]]]] 116

Table 36. Variables in symbol table

The tagnames may be defined at a shallower scope:
statechart sc

-

x )

S

tagname variable t @
declarations declarations @
here here

\_ %
S )

Figure 62. Tagname in shallower scope

This has no effect on the symbol table entries of the variables being declared. However,
whenever a variable's actual type is accessed, the true path in which the tagname was
declared will be used.

We now consider what happens when scoping operators are applied
e to the tagname

e to the variable name

e to terms on the right hand side of the initialization expression

Consider the following state machine
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statechart sc
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Figure 63. Scoping example for variables
In STATECRUNCHER this is represented by
// "Tie" example

statechart sc(p)
PCO pcol;
event alpha@pcol;
cluster p(q)
enum colour {red=1l,green=3,blue=4};
cluster g(r)
colour colour of the day=green;
cluster r(s)
cluster s (t)
$$Scolour $my tie col = $$colour of the day;
cluster t(a,b)
state a ;
state b ;

The statement under consideration (in machine path context sc.p.q.r.s)is
$S$colour $my tie col = $Scolour of the day;

We examine the constituent parts.

$my tie col: This statement defines the variable my tie col as if it had been
defined directly in machine path sc.p.q.r

$$Scolour : The scoping expression on the tagname affects the type of the variable. In
this case, the variable my tie col is defined to be of type
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[vardecl, [enumtype, [colour, [sc.p]l]]].
Note the shortened machine path within the type. This is the way the symbol table entry is

made, irrespective of whether colour is to be found at this level or a more outer level.

$$colour_of the day:

Variables (and enumerators) on the right hand side have their
machine path modified with respect to the statement machine path (not the tagname or left-
hand-side-variable machine path). So the scope in which colour of the day is first
sought will be se.p.q. As usual when it comes to looking up a symbol within some scope,
an outward search takes place to find the symbol as necessary. In this case the symbol is
found in this first-attempt scope, sec.p.q. If that were not the case, it would also be sought
in scope sc.p and then in scope sc.

Symbol table entry made as the result of the example statement:

name machine type value
path
my tie col sc.p.q.r [vardecl, [enumtype, [colour, [sc.p]]]] eg. 3

Table 37. Symbol table entries for scoped variables

45.3 PCO declaration statements

Syntax of a PCO declaration

PCO pcoexprssion, pcoexpression,...;

Example, in the machine path context of sc.p.q.r.s

PCO pcol, Spco2;

This will declare a symbol pcol in context se.p.g.r.s and a symbol pco2 in context

sc.p.q.r

name machine type value
path

pcol sc.p.d.r.s pcodecls -

pco2 sc.p.q.r pcodecls -

Table 38. Symbol table entries for PCO declarations

45.4 Event declaration statements and PCOs in use

Syntax

event eventexpression,eventexpression,...[ @pcoexpression];
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Example, in the machine path context of sc.p.q.r.s
event omega
event alpha, $SbetalS$Spcol

This will declare an event alpha in machine path context sc.p.q.r.s, and an event
beta in machine path context sc.p.q.r. The PCO expression sSpcol is evaluated with
respect to the statement machine path. Both of these events will be related to the PCO
expression by the event value field in the symbol table entry.

name machine type value
path
omega sc.p.q.r.s pcodecls [1]
alpha sc.p.d.r.s pcodecls [pcol, [sc.p.q]
beta sc.p.q.r pcodecls [pcol, [sc.p.q]

Table 39. Symbol table entries for event declarations

455 Eventsin use

Events are used in transitions, which are part of a state statement (cluster set or leaf-state).
The transition description does not add any symbols to the symbol table. So determining the
reference to a specified event in use is simply a matter of evaluating the scope of an
eventexpression and searching for it in the symbol table from the evaluated scope outwards.

Example
alpha, $Sbeta->d

The events specified are:
alpha machine path context sc.p.qg.r.s
beta in machine path context sc.p.qg.r
If these events have only been defined at a higher level, then that level will be taken.
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4.5.6 State declaration statements

The scope of a state is determined by its hierarchical position in the complete ECHSM
machine description. The current version of STATECRUNCHER does not provide any means to
override this.

Symbols are entered in the symbol table with machine paths representing states above but not
including the current state.

statechart sc

[
o , 2

®
> ),

Figure 64. States declarations

5 -
®

name | machine path type value
sc [] statechart -
P [sc] cluster -
q [sc.p] cluster -
r [sc.p.ql cluster -
s [sc.p.g.r] set _
t [sc.p.g.r.s] cluster -
a [sc.p.g.r.s.t] leafstate -
b [sc.p.g.r.s.t] leafstate -
c [sc.p.g.r.s] leafstate -

Table 40. Symbol table entries for state declarations

4.5.7 States in use

States are specified as scoped expressions, but with an exceptional aspect. The machine path
used to evaluate a stateexpression is first shortened by one level. This rule gives a natural
representation of transition target states. The shortening of the machine path can be
interpreted as "moving out one level from the nested machine hierarchy"”. This is the state
from which it is natural to view target states.
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The split operator

This operator is used to define multiple target states of transitions. STATECRUNCHER allows
transitions to specify targets in more than one member of a set. This can take place at various
hierarchical levels, so requiring a target state tree. This is illustrated in the figure below.

s

statechart sc

/" a

o —>aa

. (p.pb.pba/\t.q. (ga.gaa/\gb.gbb))

)

\_

—

o

N

)

Figure 65.

Multiple target states

Note that the target state tree need not specify all targets in a set — defaults (or historical

states) will be taken where no specific target is specified.
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The target state tree is specified using an operator to denote "and co-member", represented
above by the symbol /\. The operator is available to target state expressions but is not
available in other state expressions.

The operator is specified (in the same notation as used for scoping operators) as follows:

Operator Operator definition Input Input Action
syntax [op, precedence, shape, |argument |argument
name] 1 2

argl/\arg2 | [op, 14, [y, f,x],split] |state-expr |state-expr |the two operands, after
evaluation, define two
state-expressions, to be
returned in a list.

Table 41. Split operator

This gives a lower binding precedence than the scoping operators (:: %% $ .). Either
associativity could have been chosen. The term [y, £,x] denotes a LEFT associative
operator, (such as the + operator), so that

a /\ b /\ c/\ d= ((a/\b)/\c)/\d

Restriction

Note: The left hand side of the "." and "%%" operators should not be a term which has
already been split, (although such a thing does make sense), since such a construction is
unusual and the evaluator does not currently support it. So, in the figure below, it would not
be permissible to write

oa->a. ((aa/\ab) .x)
Instead, the following should be used:

oa->a. (aa.x/\ab.x)

Figure 66. Restriction in use of the split operator
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Evaluation of the split operator

The evaluator for terms combined with this operator produces a list of [STATE | SPATH] lists
representing the target tree. Expressions are evaluated in an evaluation scope representing a
state in hierarchy. Scopes are represented as a list, with the most local part of the hierarchy at
the head of the list (i.e. on the left). Typical evaluations are as follows:

Evaluation Expression Evaluation
Scope
1 [bb, aa] dd/\ee [[dd,bb,aal,
[ee,bb,aal]
2 [bb, aal pp.dd/\ee [[dd, pp,bb,aal,
[ee,bb,aal]
3 [bb, aal (pp.dd) /\ee [[dd, pp,bb,aal,
[ee,bb,aal]
4 [bb, aal pp. (dd/\ee) [[dd,pp,bb,aal,
[ee,pp,bb,aal]
5 [bb, aa] pp. (dd/\ (ee/\ff.gg)) [[dd, pp,bb,aal,
]

[ee,pp,bb, aa
[gg, ff,pp,bb,aal]

14

6 [bb, aa] pp. ((dd/\ee) /\ff.gqg) [[dd, pp,bb,aal,
[ee,pp,bb,aal,
lgg, ff,pp,bb,aal]

7 [bb, aa] pp. ((dd/\$ee) /\ff.gq) [[dd, pp,bb, aal,
[ee,bb,aal,
[gg, ff,pp,bb,aal]

8 [bb, aal pp. ((dd/\ee) /\ (ff.£f2/\gg.hh)) | [[dd, pp,bb,aal,
[ee,pp,bb,aal,
[f2,ff,pp,bb,aal,
(hh, gg,pp,bb,aal]

9 [bb, aal pp. (dd/\ee) /\ (f£.£2/\gg.hh) [[dd, pp,bb, aal,
[ee,pp,bb,aal,
[f2,ff,bb,aal,
[hh,gg,bb,aal]l

10 [cc,bb,aal $Spp. (dd.ee.ff/\S$gg.hh.ii) [[ff,ee,dd, pp,aal,
[ii,hh,gg,aa]l]

11 [cc,bb,aa,sc] |::pp. (dd.ee.f£f/\$gg.hh.ii) [[ff,ee,dd, pp,sc],
[ii,hh,gg,sc]]

12 |lcc,bb,aa,sc] |::$pp/\$S$dd [[pp],
[dd, aa,sc]]

13 |lcc,bb,x1,x2, |aa%%pp/\$$dd [ [pp,aa,scl,

aa, sc] [ddx1,x2,aa,sc]]
14 | [cc,bb,aal (pp/\gq) .rr  // violates the unknown

restriction mentioned above.

Table 42. Evaluations of the split operator

The target of transition o in Figure 65 is represented by
aa. (p.pb.pba/\t.q. (ga.qgaa/\gb.gbb))
in evaluation scope
[a,s,sc]
evaluating to
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[ [pba,pb,p,aa,a,s,sc],
[gaa,qga,q,t,aa,a,s,scl],
[gbb,gb,q,t,aa,a,s,sc]]

4.6 Type compatibility in expressions

A rigorously typed language would require exact type matching of terms in expressions, and
in left and right hand sides of assignments. It is felt that in STATECRUNCHER more freedom
should be allowed: certainly a range-type variable should be compatible with integers.

Note that there is a type incompatibility if two types have the same name but due to scoping
considerations they refer to type definitions at different scoping levels.

Example
$$Scolour S$Smycolour = S$yourcolour;

There are two references to type a type definition named colour.
1: the one found by an outward search starting from $$$<current machine path>
2: the one found by an outward search starting from $<current machine path>

If these yield the same definition, the expression is type compatible, otherwise it is not.

Note:
In the current version of STATECRUNCHER, integers are compatible with all enum types.

4.6.1 Type compatibility in functions

STATECRUNCHER supports functions according to the GP4 implementation paradigm. This is
an addition to the baseline document [ECHSM]. For simplicity in an initial version of
STATECRUNCHER, functions are typeless. All functions accept any type in their parameters
and the return parameter will match any type. This means that an identity function could act
as a cast.

If rigorous typing is ever needed, function signatures could be provided:

e as an expedient, in Prolog directly (whereby the user follows a prescibed paradigm)
¢ as function declaration statements added to STATECRUNCHER syntax.
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5. The validator module

The validator performs static validation of a STATECRUNCHER model, and produces

e error messages (on screen and in the validation listing file).

e asymbol table

e across reference table

These tables are produced on screen and in the validation listing file, and also in Prolog-
readable form in a validation data file. The symbol table will be used by the run-time State
Machine Engine (which is still future work at the time of writing). It is possible, but not
likely, that the cross reference table will be used in the State Machine Engine.

The validator also initializes all variables and produces
o initial variable data in a Prolog "database" in the validation data file.

5.1 Validation checks

Validation checks can result in an error message or a warning message.

The following actions are performed and checks made:

Phase/Action Check for error condition: Severity
INITIAL
No compiled files loaded Error
Multiple compiled files loaded Warning
Version of compiler & validator incompatible |Error
There were compile-time errors Error
SYMBOL TABLE CONSTRUCTION
Double definition of an entry Error

VARIABLE INITIALIZATION

Range error on initializing Error

CROSS REFERENCE TABLE CONSTRUCTION

Polyvalent symbol in non-overlapping scopes |Warning

Polyvalent symbol in overlapping scopes Error
Type mismatch in assignment Error
Type mismatch in expression Error
Unreferenced symbol Warning

Table 43. Validation checks
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Many more checks would be needed for completeness; in the current version additional
checks, including transition validity checks, have been consigned to run-time. Certain checks
could be very algorithm-specific; only in a very stable product would they usefully be

performed statically.

5.2 Symbol table construction

While the symbol table is being constructed, it is a list containing entries in the following

format

[SYMBOL, MACHINEPATH, SYMBOLTYPE, VALUE]

The machine path is the path that is obtained after applying scoping operations on the symbol.
The following tables show symbol types and values.

Symbol type

Applies to

fixed_constant

fixed constant (e.g. true, false)

[typedecl,range]

TAGNAME (range)

[typedecl,enumerated]

TAGNAME (enumerated)

[enumerator, TAG]

ENUMERATOR

[vardecl,[enumtype,[TAG, TAGPATH]]]

VARIABLE (range or enumerated)

[vardecl,[bool]]

VARIABLE (boolean)

eventdecl event
pcodecls pco
statechart statechart
set set
cluster cluster
leafstate leaf state

Table 44.

Symbol types

The VALUE field if a symbol table entry is dependent on the symbol type:

Symbol type

Value field

fixed_constant

numerical value, GP4-wrapped, e.g. [ex_co, int,0]

[typedecl,range]

list of low,high, e.g. [20,32]

[typedecl,enumerated]

legal values in a list, e.g. [0,1,3]

[enumerator, TAG]

numerical value, GP4-wrapped, e.g. [ex_co, int,3]

[vardecl,[enumtype,[TAG, TAGPATH]]]

numerical value, GP4-wrapped, e.g. [ex_co, int,3]

or unknown
[vardecl,[bool]] numerical value, GP4-wrapped, e.g. [ex_co, int,1]
or unknown
eventdecl name of corresponding PCO (or empty list if none)
pcodecls no value (entered as st_novalue)

statechart, set, cluster, leafstate

no value (entered as st_novalue)

Table 45. Symbol values
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When the list of [SYMBOL, MACHINEPATH, SYMBOLTYPE, VALUE] entries is
complete, it is sorted with the following sorting priority:

1. The type (so that like entries appear together). The order is:
- fixed constants
- type declarations
- enumerators
- variable declarations
- PCO declarations
- event declarations
- statecharts
- sets
- clusters
- leafstates

2. The ALPHABETICAL ORDER of the symbol within a type
3. If two symbols are identical, the LONGER (most local) path comes first
4. If two path lengths are equal, the PATH ELEMENTS are used to sort alphabetically

The symbol table is then Prolog-asserted for use by subsequent code, and also written to the
validator data file. The sorted list of all entries is not kept in scope. Entries are asserted
individually as predicates as follows:

st entry(SYMBOL, MACHINEPATH, SYMBOLTYPE, VALUE).

The symbol table can be accessed via the predicate va get st entry. This predicate
performs the outward search on the machine path to find the symbol that is in scope. Its
parameters are
P1: INPUT EPATH effective machine path of symbol as used
(after applying scoping operators)
P2: INPUT SYMBOL as in the symbol table

P3: OUTPUT DPATH machine path as declared as in the symbol table
P4: either TYPE symbol type as in the symbol table
P5: OUTPUT VALUE as in the symbol table
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5.3 Cross reference table construction

Cross reference entries are asserted and written to the validator data file as follows:
xr entry (SYMDECL, USEDIN)

where SYMDECT defines a symbol uniquely, and USEDIN describes a statement in which the
symbol is used.

SYMDECL= [DSYMBOL, DPATH, DTYPE]
DSYMBOL = identifier for symbol as declared
DPATH = the machine path of the symbol as declared
DTYPE = the type of the symbol

For fixed constants, e.g. true
SYMDECL= [SYMBOL, [],DTYPE]

USEDIN= [USYMBOL, UPATH, UTYPE]
USYMBOL= statement name where SYMBOL is used
UPATH= machine path of statement with SYMBOL in use
UTYPE= type of statement with SYMBOL in use

There will be a symbol table entry for USYMBOL/UPATH.

Notes

1. Each entry is tested for existence in the symbol table or as a fixed constant. If it is not
found, an error message is given (undefined symbol).

2. If a symbol occurs more than once in the same statement, it is given just one cross-

reference entry. This also applies if the symbol appears in more than one guise (e.g. x and
$x, but referring to the same x).
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5.4 Type checking

We make a distinction between major types and variable types.

PCO event state tagname variable

major types

bool tagged

tag-i etc.

Figure 67. Types

Constants and enumerators are of the "variable" major type.

There are various kinds of type checking:

Undefined typed symbol

Whenever a symbol is encountered which must be of a certain major type, a check is made
that there is a symbol of that major type in the symbol table. If that is not the case, an error
message is given (irrespective of whether the symbol has not been defined at all, or has been
defined as another major type).

Expression type checking
The issue here is compatibility of variable types. Expressions can be viewed as a parse tree
with a top level operand; the types of operands are evaluated recursively under the following

rules

90

terminals return their own type as declared in the symbol table, (so after the outward

search if they are not immediately in scope).

operators examine the types of their operands to determine the return type. If the

types of the operands are incompatible or unexpected, an error message is given.

Examples

- Scoping operators return the same type as their operand.

- Arithmetic monadic operands return the same type as their operand.

- Arithmetic dyadic operators expect their operands to be of the same type and they
return that type.

The function "in" returns the boolean type.
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- Other functions accept any type and return a Prolog non-ground type, which will
match any type. Functions currently have no prototypes and accept any type in their
arguments.

The va_expr type predicate that does the type checking returns type [typerr, error-
detail] if the expression contains a typing error. This information is reproduced in the
corresponding error message.

Assignment type checking
Here, the left hand side and right hand side of an assignment are checked for type
compatibility.

5.5 Data store
Variables are stored in the data store as Prolog predicates of the signature
db variable (WORLD, [SYMBOL, PATH], VALUE) .
where the value is GP4-wrapped. Example
db variable (WORLD, [b2, [p,s,my st]], [ex co,int,11]).

This format is not quite compatible with standard GP4, as that does not allow for a world or
scoping component to the data. A consequence is that the STATECRUNCHER expression

evaluator has some systematic variations with respect to the GP4 one.

As data changes, the relevant db variable predicates are retracted, modified and re-
asserted.
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6. Compilation example

6.1 The STATECRUNCHER compilation & validation process

An overview is shown schematically in the figure below (as Figure 2):

STATECRUNCHER model
file.scs.txt

A 4

Com@

\4
compiler listing object file
file.scl.txt file.sco.pl

console output

Validator

. I

validator listing data file
file.scv.txt file.scd.pl

l

input to state
machine engine

console output
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6.2 Example model compiled

(s \ statechart sc | llbvl=true; bv2=false |
- N
& (bv2) a{fire B(bvl,bv2)}
al j@
04
b B (bvpl,bvp2) [bvplss (!bvp2) ]
bl
B{fire o }
N Y,

Figure 68. Fired event (deterministic) [model t5150]

Source code

statechart sc(s)
event alpha,beta,gamma;
bool bvl=true,bv2=false;
set s (a,b)
cluster a(al,a2)
state al {alpha->a2{fire beta(bvl,bv2);}; gamma (::bv2); }
state a2 {alpha->al;}
cluster b (bl,b2)
bool bl.bvpl,bl.bvp2;
state bl {beta (bvpl,bvp2) [bvpl&s& ('bvp2)]->b2;}
state b2 {beta->bl {fire alpha;};}

Obiject code of state al

oc state(

1,1 ok, [mpath,1 ok, [al,a,s,sc]], [leafstate,al, [opt2trblk,1 ok, [[enterblk,1 ok
, [11, [exitblk,1 ok, []], [transitions,1l ok, [[transition,l ok, [[metaevents,l ok,
[[metaevent, 1l ok, [t event,l ok, [[ex evt expr, [ex id,alphal], [tevt paramblk,

1 ok, [111111],[condition,1 ok, []], [route,1l ok, [[], [xstate,l ok, [ex sta expr, [
ex id,a2]]]1]], [optactblk,1l ok, [[action,l ok, [action ev,1l ok, [[param ev,1 ok, [
[ex evt expr, [ex id,beta]], [evt paramblk,l ok, [[ex expr, [ex id,bvl]], [ex expr
,lex id,bv2]]1111111111, [labelblk,1 ok, []]]], [transition,l ok, [[metaevents,

1 ok, [[metaevent,l ok, [t event,l ok, [[ex evt expr, [ex id,gamma]], [

tevt paramblk,l ok, [[ex var expr, [[ex monadic,mscope], [ex id,bv2]]1]111]1111, I

condition,l ok, []], [route,1 ok, [[],[]]], [optactblk,1 ok, []], [labelblk,1 ok, []
11111111) .
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Validator listing

e +
| STATECRUNCHER VALIDATOR (Version 1.04) |
| Copyright (C) Philips Electronics N.V, 2000-2003 |
e +
e +
| SYMBOL AND CROSS REFERENCE TABLE |
- +
SYMB false [1] fixed constant [ex co,int, 0]
SYMB true [1] fixed constant [ex co,int, 1]
SYMB bvl [sc] [vardecl, [bool]] [ex co,int,1]
XREF leafstate al:[a, s, sc]
SYMB bv2 [sc] [vardecl, [bool]] [ex co,int, 0]
XREF leafstate al:[a, s, sc]
SYMB bvpl [bl,b,s,sc] [vardecl, [bool]] unknown
XREF leafstate bl:[b, s, sc]
SYMB bvp2 [bl,b,s,sc] [vardecl, [bool]] unknown
XREF leafstate bl:[b, s, sc]
SYMB alpha [sc] eventdecl []
XREF leafstate al:[a, s, sc]
XREF leafstate az:[a, s, sc]
XREF leafstate b2:[b, s, sc]
SYMB beta [sc] eventdecl []
XREF leafstate al:[a, s, sc]
XREF leafstate bl:[b, s, sc]
XREF leafstate b2:[b, s, sc]
SYMB gamma [sc] eventdecl []
XREF leafstate al:[a, s, sc]
SYMB sc [1] statechart
SYMB s [sc] set
SYMB a [s,sc] cluster
SYMB b [s,sc] cluster
SYMB al [a,s,sc] leafstate
XREF leafstate a2:[a, s, sc]
SYMB a?2 [a,s,sc] leafstate
XREF leafstate al:[a, s, sc]
SYMB bl [b,s,sc] leafstate
XREF leafstate b2:[b, s, sc]
SYMB b2 [b,s,sc] leafstate
XREF leafstate bl:[b, s, sc]
- +
| END OF SYMBOL AND CROSS REFERENCE TABLE |
e +
e +
| STATECRUNCHER: VALIDATION COMPLETE - 0 ERROR(S)
\ 0 WARNING (S) |
e +
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Validator-produced data (some Prolog directives excluded)

/* _________________________________________________________ */
/* STATECRUNCHER VALIDATOR-GENERATED DATA (Version 1.04) */
/* Copyright (C) Philips Electronics N.V, 2000-2003 */
/* _________________________________________________________ */
vd version('1.04")

[Hmmm e enumerators--------- */

[Hmmmm symbol table--------- */

st entry(1l, false, [], fixed constant, [ex co,int,0]).

st _entry(l,true, [],fixed constant, [ex co,int,1]).

st entry(1l,bvl, [sc], [vardecl, [bool]],st see database).

st _entry(l,bv2, [sc], [vardecl, [bool]],st see database).

(

(

(

(

(

(

st _entry(l,alpha, [sc],eventdecl, [])
st _entry(1l,beta, [sc],eventdecl, []).

st _entry(l,gamma, [sc],eventdecl, [])

st entry(l,sc, [],statechart,st novalue).

st entry(l,s, [sc],set,st novalue).

st _entry (1, a,[s,sc],cluster,stinovalue).

st entry(l,b, [s,sc],cluster,st novalue).

st entry(1l, al [a,s,sc],leafstate,st novalue)
st entry(l,a2, [a,s,sc],leafstate,st novalue).
st entry(1l,bl, [b,s,sc],leafstate,st novalue).
st entry(1l,b2, [b,s,sc], )

leafstate, st novalue

db variable (1, [bvl, [sc]], [ex co,int,1]).
db variable (1, [bv2, [sc]], [ex co,int,0]).
db variable (1, [bvpl, [bl,b,s,sc]],unknown) .
db variable (1, [bvpZ2, [bl,b,s,sc]],unknown) .

gamma, [sc],eventdecl], [al, [a,s,sc],leafstate]).
alpha, [sc],eventdecl], [a2, [a,s,sc], leafstate]).

Xr_entry
Xr entry

xr entry([beta, [sc],eventdecl], [bl, [b,s,sc],leafstate]).
xr entry([beta, [sc],eventdecl], [b2, [b,s,sc],leafstate]).
xr entry([alpha, [sc],eventdecl], [b2, [b,s,sc],leafstate]).
xr entry(la2, [a,s,sc],leafstate], [al, [a,s,sc],leafstate])
xr entry([al, [a,s,sc],leafstate], [ [a,s,sc],leafstate]).
xr entry([b2, [b,s,sc],leafstate], [bl, [b,s,sc],leafstate]).
xr entry([bl, [b,s,sc],leafstate], [b2, [b,s,sc],leafstate])

vd errorcount (0) .
vd _warningcount (0) .

/*--—[End of file

\determ fire.scd.pl ]---*/

st _entry(1l,bvpl, [bl,b,s,sc], [vardecl, [bool]],st see database).
st _entry(l,bvp2, [bl,b,s,sc], [vardecl, [bool]],st see database).

[F—————— cross reference table--———----—- */

xr entry([true, [],1int], [bvl, [sc], [vardecl, [bool]l]l])

xr entry([false, [],1int], [bv2, [sc], [vardecl, [bool]]]

xr entry([bvl, [sc], [vardecl, [bool]]], [al, [a,s,sc],leafstate]).

xr entry([bv2, [sc], [vardecl, [bool]]], [al, [a,s,sc],leafstate]).

xr entry([bvpl, [bl,b,s,sc], [vardecl, [bool]]], [bl, [b,s,sc],leafstate]
Xr entry bvp2, [bl,b,s,sc], [vardecl, [bool]]], [bl, [b,s,sc],leafstate]
xr entry([alpha, [sc],eventdecl], [al, [a,s,sc],leafstate]).

xr entry([beta, [sc],eventdecl], [al, [a,s,sc],leafstate]).

) .
).

F:\KWinPro\StCr\StCr2sand\..\StCr3ModelsTest\t5000me\t5150 determ fire
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7. Prolog grammar code example:
STATECRUNCHER declarations

/* ___________________________________________________________________________ */
/* Module: sy_sc_2.pl */
/* Author: Graham Thomason, Philips Research Laboratories, Redhill */
/* Date: 15 December, 1999 */
/* Purpose: Statecruncher Syntax (2): Declarations */
/* */
/* Project: Testing Reusable Software Components (756) */
/* */
/* Copyright (C) 1999 Philips Electronics N.V. */
/* ___________________________________________________________________________ */
2 —— */
/* PRL PROTOTYPE Software */
/* */
/* ___________________________________________________________________________ */
/* ___________________________________________________________________________ */
/*345678901234567890123456789012345678901234567890123456789012345678901234567*/
/* 1 2 3 4 5 6 7 */
/* ___________________________________________________________________________ */
/* ___________________________________________________________________________ */
/* DYNAMIC PREDICATES */
/* ___________________________________________________________________________ */
/* ___________________________________________________________________________ */
/* EXTERNALS */
/* ___________________________________________________________________________ */
/* ___________________________________________________________________________ */
/* ASSERTIONS AND RETRACTIONS */
/* ___________________________________________________________________________ */
/* ___________________________________________________________________________ */
/* MULTIFILE DECLARATIONS */
/* ___________________________________________________________________________ */

2 */
/* sy present */
/* ========== */
/* Predicate for the presence of this module, */
/* Can be used to check completeness, but non-multipleness, of system load */
2 .. */

sy present(sc_2).
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/* Description: */
/* Syntax of declarations */

adiissiissisadistiaassaiisadsatissdiiatiasisatiasiiatiasiiatianiiati s iiaiisstil
JFEER AR R R R R R R R R R R R R R /

/*## Py
/*#% STATECHART - TOP LEVEL STATEMENT Iy
/*## $Hx/

[ R R A R R R R R R/
JEEEHE AR R R A R R R R R R R R R R/

/* ___________________________________________________________________________ */
/* sy statechart */
/* S */
/* */
/* */
/* SOURCE EXAMPLE */
/* statechart newtv (xyz) */
/* statechart #rubbish */
/* */
/* */
/* PARSE x/
/* [Statechart,l_ok,[STATECHART_NAME,STATE_NAME]] */
/* [statechart,l er, ['**Error: statechart']] *x/
/* */
/* ___________________________________________________________________________ */

sy statechart( , )-->
{sy_debug log(sy statechart), fail}.

sy _statechart (GSTATUS, [statechart,1l ok, [NAME, SNAMSBLK]]) -->
sy keyword(g ok, [ , ,statechart]),
sy identifier(g ok, [ , ,NAME]),
sy statenames block (GSTATUS, SNAMSBLK) ,
{1y,

sy statechart(g er, [statechart,l er, ['**Error: statechart']])-->
sy keyword(g ok, [ , ,statechart]),
ex_any text long (TEXT), /* illegal bit here */

{!}).

JFEERE AR R R R R R R R R R R R R R R R e/
JFEEEE AR R R R A R R R R R R R R R R/

/x4 ix)
/*## TYPE DECLARATION Iy
/*H## $ax/
Va3 $ax/

JFEEE AR R R R R R R R R R R R R R R R R R Y/
JFEER AR AR R R R R R R R R R R R R e/

/* ___________________________________________________________________________ */
/* sy type declaration */
/% ======== */
/* */
/* SOURCE ny
/* enum TYPENAME { INTEGER .. INTEGER } ; */
/* or enum colour { red=9, green, blue=8, yellow } */
/* or <Error-parse> enum ANYTEXT ; */
/* */
/* SCOPING EXTENSION: TYPENAME can be a TAG-EXPRESSION */
/* */
/* PARSE */
/* [typedecl,l ok, [ETYPENAME, ENUMBODY] ] */
/% - */
/* ___________________________________________________________________________ */
sy type declaration( , )-->

{sy debug log(sy type declaration), fail}.
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sy type declaration (GSTATUS, [typedecl,1 ok, [TAGEXPR, ENUMBODY]])-->
sy keyword(g ok, [ , ,enum]),
sy expr(levels all,sc tag,EXPR),
{ EXPR=[ex expr,E], TAGEXPR=[ex tag expr,E] },
sy enum body (GSTATUS, ENUMBODY) ,

sy literal(';'),

(.
/* _____________________________________________________________ */
/* sy_type_declaration */
/¥ ======== */
/* */
/*  enum **ERROR-HERE** */
/* */
/* _____________________________________________________________ */
sy type declaration(g er, [typedecl,l er,PARSE])-->

sy keyword(g ok, [ , ,enum]),

ex any text long( ), /* illegal bit here */

{ PARSE=['**Error: type declaration: in enum'] },

{'y.

adiisasiasisasiasisasiasisaisaiisaiiasianiiatisaiiatianiiatianiiatisniit it il

/*# #*/
/*# ENUM BODY #*/
/*§ ========= #*/
/*# #*/
/A EH AR AR A A AR A A AR A A AR A AR R A AR R A AR R R AR R R A/
/* ___________________________________________________________________________ * /
/* sy enum body */
/* S —— */
/* */
/* An enum body is: */
/* a RANGE { integer .. integer } */
/* or VALUE NAMES { red=9, green, blue=8, yellow } */
/* or an ERRONEOUS PARSE { ANYTEXT } *x/
/* ___________________________________________________________________________ * /
sy _enum body( , )-->

{sy debug log(sy enum body), fail}.

2 — */
/* range type */
2 —— */
sy_enum_body (GSTATUS, [enumbody, 1 ok, RANGE]) -->

sy range (GSTATUS, RANGE) ,

/* ________________________________________ */
/* value names type */
/* ________________________________________ */
sy _enum_body (GSTATUS, [enumbody, 1 ok, VALNAMS]) -->

sy valuenames (GSTATUS, VALNAMS) ,
{'.

/* ________________________________________ */

/* error type */

/* ________________________________________ */

sy enum body (g _er, [enumbody,l er, ['**Error: enum body: between braces']])-->
sy bracepairs('{}"', TEXT), /* braces and illegal text picked up here */

{!}).

JFEER AR R R R R R R R R R R R R R R /

/*# #*/
/*# RANGE #*/
/*H ===== #*/
/*# #*/

adiisasisisadistiaassaiiaaisaiiaaiatiasisatiasiiatiatiai ittt isaisstill
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/* sy _range */
/¥ ===m==== */
/* */
/* SOURCE */
/* { integer,..,integer } second integer >= first */
/* */
/* PARSE */
/* [range, [2,12]] */
/* [range, [sy err |ERROR DETAIL]] */
/* */
/* NOTE: */
/* We do not have an erroneous range handler at this level because */
/* there are other {...} production rules in a sister relationship to this */
/* */
/* We do, however, want to process the braces { } as they are a nice */
/* handle on this item, in particular for repeating items, such as */
/* occur in a sister predicate, for value names */
2 R E—————— */
sy range( , )-->

{sy debug log(sy range), fail}.

sy_range (STATUS, [range, LSTATUS, PARSE]) ——>

sy literal('{'"),

sy int (VAL1),

sy literal(','),

sy literal('..'),

sy literal(','"),

sy int (VAL2),

sy literal('}'),

{

VAL2 >= VALL,
STATUS=g_ok,
LSTATUS=1 ok,
PARSE=[VAL1, VAL2]

VAL2 < VALIL,
STATUS=g_er,

LSTATUS:l_er,
PARSE=[VALl,VAL2, '**Error: range: lower .. higher']

b
{'y.

JEEEEE AR R R R A R R R R R R R R R R/

/*# #*/
/*# VALUE NAMES #*/
/*# =========== #*/
VA i #*/
/A EF AR A AR A AR A AR A A AR R A AR R R AR R A A A R R AR R A Y/
/* ___________________________________________________________________________ * /
/* sy valuenames */
/* [ ——— */
/* */
/* General approach */
/* */
/* SOURCE e.g. */
/* { red=9, green, blue=8, yellow } */
/* */
/* no requirement to be non-overlapping */
/* no req to be ascending order */
/* FCHSM's do not allow negative numbers (or constant expressions) */
/* */
/* PARSE */
/* [valnams, [ [NAME,VALUE], [NAME,VALUE]...] 1] */
/* [valnams, [sy err |ERROR DETAIL]] */
/* */
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/* NOTE: */

/* We do not have an erroneous handler at this level - */
/* see comments on "RANGE" */
/* */
/* syntax as seen at first level of parse productions */
/* */
/* SOURCE */
/* { ENTRY RESTVALUENAMES } */
/* */
/* ___________________________________________________________________________ */
sy valuenames( , )-—>
{sy debug log(sy valuenames), fail}.
sy_valuenames (GSTATUS, [valnams, 1 ok, [HEAD|TAIL]])-->

sy literal('{'"),

sy valname entry(GSTATUS1,[ , ,HEAD]),

sy restvaluenames (GSTATUS2, [ , ,TAIL]),

sy literal('}'),

{ sy combine statuses([GSTATUS1,GSTATUS2],GSTATUS) },

{'y.

2 A — */
/* sy_restvaluenames */
/* */
/* */
/* SOURCE */
/* ,ENTRY,ENTRY... (or null) */
/* */
/* PARSE x/
/* [restvalnams, LSTATUS, [ENTRY, ENTRY, ENTRY, . ..] */
/* ___________________________________________________________________________ */
sy _restvaluenames (GSTATUS, [restvalnams, 1 ok, [HEAD|TAIL]])-->

sy literal(','),

sy _valname entry(GSTATUS1, [ , ,HEAD]),

sy restvaluenames (GSTATUS2, [ , ,TAIL]),

{ sy combine statuses([GSTATUS1,GSTATUS2],GSTATUS) },
{'y.

sy restvaluenames (g ok, [restvalnams,1l ok, []])-->
ex_opt delim(_),
{1}.

/* ___________________________________________________________________________ */
/* sy valnam entry */
Y ——— */
/* */
/* SOURCE */
/* Xyz */
/* Xyz=6 */
/* */
/* PARSE */
/* [valnament, LSTATUS, [xyz, 6]] */
/* ___________________________________________________________________________ */
sy valuename entry( , )-->

{sy debug log(sy valuename entry), fail}.

sy_valname entry (
sy identifier(
sy literal('='
sy int (VAL),
(.

g_ok, [valnament, 1 ok, [ENTRY,VAL]])-->
g_ok,[_,_,ENTRY]),
)I

sy valname entry(g ok, [valnament,1l ok, [ENTRY]])-->
sy identifier(g_ok,[ , ,ENTRY]),
{'y.

[ E AR AR R R R A R R R R R R R R R R R R/
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adiisssiasiaasiasiaassasiaadsasiasiasiasisatiasiiatiasiaiiasiaiianiiaiistill

/*H## ##H*/
/*#% VARIABLE DECLARATIONS Iy
/*## ##*/
/x4 ey

adiissdissisadistisassatisadsatisadiatiasisatiasidatiasiiatiasiiatianiiaiisstil
JFHER AR AR R R R R R R R R R R R R e/

K */
/* sy var declaration */
/¥ ======= */
/* */
/* SOURCE ny
/* xyztype xyzl=6+x,xyz2,xyz3=T7+y; */
/* bool flagl; */
/* */
/* SCOPING EXTENSION */
/* applies to type and variable */
/* */
/* PARSE */
/* [vardecl, 1l ok, [VARDECLTYPE, VARDECLENTRY, VARDECLENTRY, ...]] */
. e */
sy var declaration( , )-->

{sy debug log(sy var declaration), fail}.

sy var_declaration (GSTATUS, [vardecl,1 ok, [VDT,VDE|VDR]])-->
sy var decl type (GSTATUS1,VDT),
sy var_decl_entry(GSTATUS2,VDE),
sy rest var decl (GSTATUS3,[ , ,VDR]),
sy literal(';'),
{ sy combine statuses ([GSTATUS1,GSTATUS2,GSTATUS3],GSTATUS) },
{'r.

sy var declaration(g er, [vardecl,l er,PARSE])-->
sy _var_decl_ type (GSTATUS1,VDT),
ex any text long( ), /* illegal bit here */

{ PARSE=['**Error: var declaration'] },

{I}.
/* ___________________________________________________________________________ */
/* sy var decl type */
/* */
/* */
/* SOURCE */
/* bool */
/* ENUMTYPE x /
/* */
/* EXTENSION FOR SCOPING EXPRESSIONS */
/* */
/* PARSE x/
/* [vardecltype, LSTATUS, [bool]] */
/* [vardecltype, LSTATUS, [enumtype, TYPE] ] */
/* ___________________________________________________________________________ */
sy var decl type( , )-->

{sy debug log(sy var decl type), fail}.

sy _var_decl type(g_ok, [vardecltype, 1l ok, [bool]])-->
sy keyword(g ok, [ , ,bool]),
{1y,

sy var decl type( , )--> /* exclude anything starting with a keyword */
sy keyword(g ok, [ , ,KEYWORD]),
{!,fail}.

sy var decl type (g ok, [vardecltype,l ok, [enumtype, TAGEXPR]])-->

/**sy identifier(g ok, [ , ,TYPE]),**/
sy expr (levels all,sc tag,EXPR),
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{ EXPR=[ex _expr,E], TAGEXPR=[ex tag expr,E] },
{'y.

o */
/* sy var decl entry */
/* ============ */
/* */
/* SOURCE Ny
/* Xyz */
/* XyZ=6+x */
/* */
/* EXTENSIONS TO ALLOW FOR SCOPING OPERATORS */
/* */
/* PARSE */
/* [vardeclent, LSTATUS, [xyz, EXPR]] */
o */
sy var decl entry( , )-->

{sy debug log(sy var decl entry), fail}.

sy var_decl entry(g ok, [vardeclent,1l ok, [VAREXPR,RHSEXPR]])-->
sy expr(levels all,sc var,EXPR),
{ EXPR=[ex_expr,E], VAREXPR=[ex var_ expr,E] },
sy literal('="),
sy_expr (levels _noasg,all,RHSEXPR),
{'y.

sy var _decl entry(g ok, [vardeclent,l ok, [VAREXPR]])-->
/* Note: deep nesting of VAREXPR for compatibility with above */
sy _expr (levels_all,sc _var,EXPR),
{ EXPR=[ex expr,E], VAREXPR=[ex var expr,E] },
{ry.

/* ___________________________________________________________________________ */
/* sy rest var decl */
/* ============ */
/* */
/* SOURCE */
/* /pqr:7 */
/* <null> */
/* */
/* PARSE */
/* [restvardecl, LSTATUS, [pqr,EXPR]] */
/* [restvardecl, LSTATUS, []] */
/* ___________________________________________________________________________ */
sy _rest var_ decl (GSTATUS, [restvardecl, 1 ok, [HEAD|TAIL]])-->

sy literal(','"),

sy _var_decl_entry(GSTATUSI1, HEAD),

sy rest var decl (GSTATUS2,[ , ,TAIL]),

{ sy combine statuses([GSTATUS1,GSTATUS2],GSTATUS) },
{1}.

sy rest var decl(g_ok, [restvardecl,1l ok, []])-->
ex opt delim( ),
{'}.

adiisssissiaasiasiaassasiaadsaiiasiasiasisatiasiiatiasiaiiasisaiianisaiissill
[ R R R R R R R R R R R R R R Y/

/*## ey
/*## PCO DECLARATIONS ey
/*H# ey
Jx g ##*/

[FEER AR R R R R R R R R R R R R e/
adiisasiisadiatiaassaiiaaisaiiaaiiatiasisatiasiiatiatiai ittt isaisstill

/* sy pco_declarations */
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/* */

/* */
/* SCOPING OPERTORS NOW INCLUDED */
/* */
/* SOURCE */
/* PCO pcol , pco2 ; (can also be scoping expressions) */
/* PCO <erroneous text> ; */
/* */
/* PARSE */
/* [pcodecls, LSTATUS, [PCODECL, PCODECL, .. .]] */
/* */
2 . */
sy pco_declarations( , )-->

{sy_debug_log(sy_gcg_declarations), fail}.

sy pco_declarations (GSTATUS, [pcodecls,l ok, [PCOEXPR|PCOREST]])-->
sy keyword(g ok, [ , ,'PCO']),
sy expr(levels all,sc pco,EXPR),
{ EXPR=[ex expr,E], PCOEXPR=[ex pco_expr,E]},
sy pco_restnames (GSTATUS, [ , ,PCOREST]),
sy literal(';'),
{!}).

sy pco_declarations(g_er, [pcodecls,l er,PARSE])-->
sy_keyword(g ok, [_, ,'PCO']),
ex any text short (TEXT), /* illegal bit here */

sy literal(';'),

{ PARSE=['**Error: pco declarations'] 1},

{'y.
/* ___________________________________________________________________________ */
/* sy pco restnames */
/¥ ==m=m=== */
/* */
/* SOURCE EXAMPLES */
/* ,pcol,pco?2 */
/* <null> * /
/* */
/* PARSE */
/* [pcorestnames, LSTATUS, [PCODECL, PCODECL, ...]] */
/* [pcorestnames, LSTATUS, [1] */
/* ___________________________________________________________________________ */
sy pco_restnames (GSTATUS, [pcorestnames, 1 ok, [PCOEXPR|TAIL]])-->

sy literal(','),

sy_expr (levels _all,sc_pco,EXPR),
{ EXPR=[ex expr,E], PCOEXPR=[ex pco_expr,E]},

sy pco_restnames (GSTATUS, [ , ,TAIL]),
{1y,

sy pco_restnames (g ok, [pcorestnames, 1l ok, []])-->
ex opt delim( ),
{'r.

JFEEE AR AR R R A R R R R R R R/
adiisssissiaasiasiaassasiaadsaiiasiasiasisatiasiiatiasiaiiasisaiianisaiissill

JxEE 4>/
/*## EVENT DECLARATIONS ##*/
/*## #*/
/*H# ##*x/

JFEEHE AR AR R R A R R R R R R R A R R R R R R R R R R R R R/
[FEER AR R R R R R R R R R R R R e/

/* sy event decl */
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/* ============= */

/* */
/* SOURCE ny
/* event eventl , event2 @ pcol ; */
/* */
/* the event can be a scoping expression */
/* */
/* PARSE */
/* [eventdecl, LSTATUS, [EVENTNAMES, PCO] ] */
K */

sy event decl( , )-->
{sy debug log(sy event decl), fail}.

sy_event decl (GSTATUS, [eventdecl, 1 ok, [EVENTNAMES, PCO]])-->
sy keyword(g ok, [ , ,event]),
sy event names (GSTATUS1,[ , ,EVENTNAMES]),
sy _opt pco(GSTATUS2,[ , ,PCO]),
sy literal(';'"),
{ sy combine statuses([GSTATUS1,GSTATUS2],GSTATUS) },
{!}).

/* ____________ */
/* error trap */
/* ____________ */
sy event decl(g_er, [eventdecl,1l er,PARSE])-->

sy_keyword(g_ ok, [_, ,event]),

ex any text long( ), /* illegal bit here */

sy literal(';'),

{ PARSE=['**Error: event declaration'] 1},

{1y,
/* ___________________________________________________________________________ */
/* sy event names */
/* ============== */
/* */
/* SOURCE */
/* eventl , event2 */
/* */
/* PARSE */
/* [eventnames, LSTATUS, [EVENTNAME, EVENTNAME, ...]] */
/* ___________________________________________________________________________ */
sy event names( , )-->

{sy debug log(sy event names), fail}.
sy_event names (GSTATUS, [eventnames, 1 ok, [EVENTEXPR|EVENTREST]]) -->

sy expr (levels all,sc _event,EXPR),

{ EXPR=[ex_expr,E],EVENTEXPR=[ex evt expr,E]},
sy event restnames (GSTATUS, [ , ,EVENTREST]),
{1y,

/* ___________________________________________________________________________ */
/* sy event restnames */
/* */
/* */
/* SOURCE EXAMPLES */
/* ,eventl,event?2 */
/* <null> */
/* */
/* PARSE */
/* [eventrestnames, LSTATUS, [EVENTNAME, EVENTNAME, . ..]] */
/* [eventrestnames, LSTATUS, []] */
/* ___________________________________________________________________________ */
sy event restnames (GSTATUS, [eventrestnames, 1l ok, EVENTNAMES])-->

sy literal(','),
sy event names (GSTATUS, [ , ,EVENTNAMES]),
{1},
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sy_event restnames (g_ok, [eventrestnames,1l ok, []])-->
ex opt delim( ),

/* ___________________________________________________________________________
/* sy_opt_pco

2 S ——

/*

/* EXTENSION TO ORIGINAL SYNTAX SINCE INTRODUCTION OF SCOPING EXPRESSIONS

/*

/* SOURCE

/* @ pcol

/* @::ml.pco2 @...pco3

/* <null>

/*

/* PARSE

/* [opt_pco, LSTATUS, [PCOEXPR] ]

/* [opt pco,LSTATUS, []]

/% a

/* ___________________________________________________________________________
/* ORIGINAL SYNTAX WITHOUT SCOPING EXPRESSIONS

/*

/* SOURCE

/* @ pcol
/* <null>

/*
/* PARSE

/* [opt pco, LSTATUS, [PCONAME] ] (name only)

/* [opt pco, LSTATUS, []]

Y2 FE— e
sy _opt pcol( , )-—>

{syidebugilgg(syioptipco), fail}.

sy opt pco(g_ ok, [opt pco,1l ok,PCOEXPR])-->
sy literal('@'),
sy expr (levels all,sc pco,EXPR),
{ EXPR=[ex expr,E], PCOEXPR=[ex pco expr,E]},
{'}.

sy _opt pco(g_ ok, [opt pco,1 ok, []])-->
ex opt delim( ),
{1}.
2 .
/* END OF MODULE sy sc_2.pl
2 T ——————
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*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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