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 Summary 

Many problems of integration testing can be addressed if adequate state-based models are 

available. This paper discusses how to model the queuing, dequeuing and dispatching of 

function-call messages as processed by a pump engine. A few extensions to the standard 

state-based paradigm are introduced from the domain of conventional imperative languages 

and techniques such as "C". 
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1. Introduction 

The emerging solution to the ‘software crisis’ – the runaway complexity, size and lead time of 

software systems – is component-based synthesis of systems. Microsoft has deployed COM 

for a number of years. Philips is applying the basic concept to embedded systems (e.g. Koala 

in CE, and a component-like API in DVP-2). Technically, components provide for system 

modularity, customisability, maintainability and upgradeability. Commercially, they provide 

a market in software modules based on open standards, but with protection of proprietary 

implementation details. For Philips Semiconductors, this gives opportunities to market re-

usable software. For Consumer Electronics, this provides a way to build large systems by 

selecting and binding components from repositories, rather than by writing millions of lines 

of code. 

 

The hard part is integration testing of systems built from components, typically from 

different suppliers (so with fair scope for disparate interpretations of the interfaces and other 

incompatibilities). Integration testing is essential to achieve a reliable system [Trew]. Since 

the primitive elements of components are functions (organized in interfaces), good modelling 

capabilities of functions are an important pre-requisite to adequate component modelling. 

Multi-threaded systems, such as television systems, (including the MG-R software 

architecture), typically need to queue function calls, and to do this they make extensive use of 

pump engines. Pump engines can be encapsulated in software components –with all the 

concomitant advantages and disadvantages of this upcoming technology. 

 

The author's earlier report, [CompBinding], focused on component composition and 

introduced a concept for handling recursive functions. The present report builds on that 

concept with the aim of designing a developer-friendly way of specifying the state behaviour 

of synchronous and asynchronous functions which may be self- or mutually recursive, and 

which may be pumped. The issue of how the models can be implemented in a state machine 

engine such as STATECRUNCHER is also considered. 

 

The motivation for work on state-based modelling, in particular function modelling, is the 

need for automated integration testing of systems built using component technology. 

Examples of component-based approaches within Philips are Koala [Koala, KoalaYP] in CE, 

and DVP-2 [vAntwerpen, Kunst] in Semiconductors. 

 

Further, the report describes how a pump engine can be modelled, i.e. the queuing, dequeuing 

and dispatching of function calls. 

 

STATECRUNCHER, a language and engine for modelling state behaviour, has been designed for 

integration testing of software components [StCrMain]. This report is written from a 
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perspective of how the techniques presented might be realized in STATECRUNCHER (of which 

some knowledge is assumed). 

 

The state diagram notation is as described in [StCrMain], which is largely compatible with 

UML notation. In places an abbreviated syntax will be used, (particularly for actions, which 

simply follow the symbol ‘/’, rather than using surrounding braces and the keyword fire 

before events). Declarations of events and variables are indicated by the following symbols. 

 

 

 

 

 

 

 

Figure 1. Symbols for variable and event declarations. 

 

 

A typical component scenario for function call and parameterized event methods is as shown 

below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Component-based system 

 

Component A will call functions in component B and vice versa. But the models of A and B 

(for simulation and testing) will not know who their clients are. Components may contain 

pump engines and so support queuing of functions to be dispatched later. 
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2. Modelling function calls 

2.1 Synchronous function calls 
 

In a synchronous function call the function executes on the caller's thread. When the function 

returns, it is regarded as complete. Clearly, the caller cannot make a second function call until 

a synchronous call completes, since the thread of control is not available. 

 

Within the category of synchronous function calls, we can distinguish between bound calls 

and unbound calls. 

 

Bound calls 
 

A bound call will run to completion without requiring any more events to drive it to 

completion. It is typically CPU-bound – an example is a function to find the maximum of a 

list of numbers. Alternatively it might involve some activity which frees up the CPU (e.g. by 

performing some I/O), but the execution is regarded as predetermined rather than dependent 

on the presence of an event. If the function call is not modelled as an atomic occurrence, i.e. if 

there can be an intervening event between start and completion, then the call is better 

modelled as an unbound one (see below). 
 

A bound call can be modelled as a simple library function in an assignment action on a 

transition: 

 

 

 

 

 

 

 

Figure 3. Bound call 

 

A bound call (like other kinds of call) is capable of firing other events. A standard library 

module will provide for this. 

b 

α/m=max(a,b,c,d)

; 
a 
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Unbound calls 
 

An unbound call requires the occurrence of at least one additional event to drive the function 

to completion. For example, if a function obtains input from a user, we might model it as 

requiring the event "input_obtained" to complete it. 

 

We initially consider the easier case of restricting the user to one call per transition. We make 

single implantations per set member on the call. The figure below illustrates the process, with 

explanations following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Implementation of unbound synchronous calls 
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Explanation and notes on synchronous calls: 
 

1. The optional fired events on the right hand side of the above figure, marked “optionally 

also ::f_return” and “optionally also ::g_return” are included for completeness 

because they would be needed in the event of a pumped call.  The “::” indicates global 

scope. Pumped calls are discussed in chapter  4. These optional events do not play a role 

in the present discussion. 

 

2. Two options were considered for representing the client side call –one with an 

intermediate "calling" state and one without, illustrated below, but both corresponding to 

the same implementation in principle. The second is perhaps more developer friendly, and 

we adopt it in general in this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. User options considered for synchronous calls 

 

 

3. The arrow  indicates the dynamic transformation of the state machine when the 

event occurs. A new state machine element is implanted on the calling event - indicated 

by  . It is not adequate to perform a static implantation of the function (e.g. at 

compile time) as some functions will be recursive; it is only at run-time that the 

termination condition can be identified and executed. Note that the tip of the transition is 

to the newly created element, (not the state indicated by the user, which will be reached 

on function completion). 

 

4. The clusters marked <S> are implanted on call as mentioned and removed on completion. 

The S stands for Synchronous, and is a variation of the <R> for Recursive of 

[CompBinding]. 
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5. The standard notation shows what state is entered on creation of the implantation. 

 

 

 

 

 

 

 

 

Figure 6. State entered on implantation creation 

 

Functions do not remember state history from one invocation to another. 

 

6. The notation (which we call a terminator) indicates that the implantation is to be 

removed after a transition entering it. Suggested syntax for this symbol: the keyword 

void. There can be several separate transitions to the terminator. 

 

7. Just as only one default state is allowed in conventional state machines, so there should 

only be one initial state in implantable machines.
1
 If necessary, fork nondeterminism can 

be applied on the next transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Equivalent model for nondeterministic initial state 

 

 

8. Although the implantations shown are clusters, they could be sets (parallel state 

machines), or possibly leaf-states. 
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9. Whatever the option chosen for the user representation, the implementation could be 

make use of the technique used by asynchronous calls. This is described in detail in 

section  2.2; it amounts to the following in this case: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Synchronous implemented compatibly with asynchronous 

 

The user cannot make use of any apparent asynchronous functionality here, because the 

state marked calling_g (or some system-generated name) and is not accessible for 

any other transitions. The client is locked in this state until the return event is fired. 

 

 

Multiple synchronous function calls 
 

If several synchronous calls are put on transition, they are necessarily to be interpreted as a 

sequence. The implementation can translate this into a chain of transitions, either built up in 

one go or created step by step. The principle is illustrated in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Multiple Sequential calls - automatic intermediate states (1) 
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If the sequence of actions contains a mixture of function calls and other actions, e.g.  
α/f, x=p+q, g,y=z, β, h ,  x=x+1 

where f, g, and h are function call events, but β is just a global event, then chaining must put 

the non-function-call actions on the linking transitions:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Multiple Sequential calls - automatic intermediate states (2) 

 

The exact sequence (or: micro-step) in which the non-function-call actions, including the 

initial one, take place, is dependent on the precise transition algorithm.  This is not discussed 

further in this report. 
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2.2 Asynchronous function calls 
 

An asynchronous function call provides return of control to the caller, called a pending return,  

but the function will continue to do some (or all) serious processing on another thread. When 

the processing associated with the call is complete, the function provides a notification. It is 

possible that intermediate and final notifications are given, perhaps indicating phases of 

processing, but any final notification will mean that no more notifications can come from this 

function invocation. The intermediate notifications can just be regarded as ordinary broadcast 

events. 

 

An asynchronous function may, depending on run-time circumstances, provide either a 

synchronous-like completion or a pending return with later notification. Take for example a 

request for a web page. If the page is in cache, it may be quickly returned with completion. 

Otherwise, the function will return pending, access the page over the Internet, and notify 

when it has been obtained. 

 

It is possible to have several asynchronous function calls outstanding at any one time, each 

running on their own thread. For this reason, in a state model, the caller and all called 

functions must be able to transition independently. Also, we must have some way to 

distinguish pending, notify and other events; if they are simply called e.g. notify, there will 

be ambiguity as to which function produced it (unlike the synchronous function case). 

Solutions might be to parameterize the events or to use names related to the function name. 

 

Implementation 
 

When an event representing an asynchronous call is processed, a state-machine element is 

implanted (as in the unbound synchronous case), but with a special status indicated by a 

double perimetral line. The ‘special status’ ensures that the implantation has a specific scope 

that is effectively local to the caller, and a lifetime that is independent of that of caller. This is 

discussed further in the notes following the figure. 

 

For multiple function calls, a temporary implantation of a machine element is performed per 

function called. 

 

The next figure illustrates the principle, with explanations following. 
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Figure 11. Implementation of asynchronous calls 
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Explanations and notes on asynchronous calls: 

 

1. Notification events are global (indicated by the “::” operator). This ensures that all 

recipients will see them, –but the name must be unique. The optional fired events on the 

right hand side of the above figure, marked “optionally also $async_return” are 

included for completeness because they would be needed in the event of a pumped call.  

Pumped calls are discussed in chapter  4. These optional events do not play a role in the 

present discussion. 

 

2. Asynchronous functions need to be distinguished syntactically from synchronous calls, 

perhaps by the keywords synchronous and asynchronous. 

 

3. The implanted machine elements, marked <A>, (for Asynchronous) have the scope of 

being a sibling of the element at the tip of the transition arrow. The scope is not related to 

the effective source (leaf-)state, nor the orbital state (if present). This fixed policy should 

facilitate precise targeting of broadcast events and variables where scoping operators are 

used. 

 

 

 

 

 

 

 

 

Figure 12. Scope of implantation 

 

 

4. The implanted machine elements, marked <A>, and with a double perimetral line, could 

be regarded as extra active members, of their parent. Thus in the case of the parent being 

a cluster, they break the ordinary rule that only one active member is allowed in a 

cluster. However, the implantation can perhaps better be thought of as rather independent 

of its machine-path parent, since it has an independent life-cycle. The parent may not 

have the implantation marked as a child, so that the implantation will not take part in 

algorithms which examine a parent's children. In this way, a cluster can be exited, for 

example, without interfering with the life-cycle of the implanted member. 
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Note that if we were to avoid breaking the ordinary rule, we might consider placing the 

implantation as a co-set member w.r.t. the caller, which would be one level too high, as it 

would not identify which co-set-member the caller was. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Implantation as a co-set-member is at a level too high 

 

 

Another attempt to avoid breaking the cluster rule is to wrap the caller in a new set, with 

the function implantations as co-set-members. Although this preserves the cluster rule, it 

changes the scope of the caller, (making the machine path one level deeper), and so 

makes scoping and targeting the caller, (from anywhere else in the entire state machine) 

difficult. Therefore, this has to be rejected as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Wrapping the caller as a set changes its scope 

 

 

5. The lifecycle of an implanted asynchronous function is independent of the lifetime of any 

other machine. It is only destroyed when the transition to the terminator (symbol  ) 

takes place. Even if a parent is another function and is destroyed, the asynchronous 

function lives on until it transitions to its own terminator. 
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6. Additional intermediate notifications can be included as well as a final notification. Only 

the final notification corresponds to the function implantation being removed, but the way 

the system knows that the implantation is to be removed is by the fact that the transition 

is to a terminator. From an implementation perspective, even a final notification will 

behave like any other broadcast event. 

 

7. As already mentioned, vents such as "pending" and "notify" need to identify the function 

they apply to by their name. But what if same function called twice in the same scope 

(there are various ways this might happen) - how to disambiguate broadcast events from 

each. Solution: Parameterize events to disambiguate. 

 

8. More deeply nested parts of the implanted machine, if present, must use e.g. a $$ scoping 

operator when targeting fired events at the caller. 

 

9. Note how a generic transition on in(f_notif) && in(g_notif) and other 

specific transition paths out of the calling state are possible (though the above is a lambda 

event, not currently envisaged to be supported). 
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2.3 Mixed synchronous / asynchronous calls 
 

If a transition contains calls to synchronous and asynchronous functions, implantations of the 

relevant kind can be provided systematically, as indicated in the following example. Events 

σ,τ,υ  are synchronous functions, events α β are asynchronous functions, and other events 

(ε ζ1-ζ6 and return events) are ordinary global events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Mixed synchronous / asynchronous calls 

 

 

Again, the synchronous functions could be implemented using the asynchronous technique. 

 

2.4 Syntax issues for synchronous and asynchronous function calls 
In order to have a focussed overview of all syntax issues resulting from all the techniques 

described in this report, syntax issues are discussed separately in chapter  5. 
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3. Parameter passing 

Review of conventional parameter passing techniques 
 

For imperative languages  (such as Fortran, Algol, C++ and Java), functions, (or procedures), 

are defined with a formal parameter (or argument) list, e.g. 
int max(int p1, int p2, int p3) ... 

When they are called, actual parameters are supplied, e.g. 

 high=max(i,*pj,k+6); 

 
The function might handle the parameters in various ways [vVliet]: 

 Call by value. The parameters are evaluated and the results are assigned to local 

variables, which are accessed using the formal parameters. The caller's variables are not 

altered this way, except where a pointer is passed and an indirect assignment is made. 

 Call by value-result (or call by copy-restore). As with call by value, the parameters are 

evaluated and the results are assigned to local variables, which are accessed using the 

formal parameters. At the end of the procedure, the actual parameters are assigned the 

final value of the local variables, so changing the value of the caller's variables. 

 Call by reference. Here, the actual parameters are evaluated once and this result is 

substituted where the formal parameters occur. Any assignment to a formal parameter 

results in an assignment to the actual parameter, and so changes the caller's variables. 

 Call by name. Here, the actual parameters are substituted in unevaluated form wherever 

the corresponding formal parameters occur. Any assignment to a formal parameter results 

in an assignment to the actual parameter, and so changes the caller's variables. 

 
Fortran uses call by reference or call by value-result. 
 

Java uses call by value, (though the caller's value is itself a reference). 
 

C++ prefers the use of call by reference, illustrated below. 
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Figure 16. Call by reference versus call by name 
 

 

 

Problem statements 
 

Fired events are used to model function calls, and it seems logical that the parameters of a 

function call should be modelled by parameters to the event. However, the caller and callee of 

a function call are typically in separate software components (client and server). The 

following questions arise: 
 

 What is the recipient of a fired event? Is it the transition? Is it the target state? What if 

there is more than one target state? Is it some code executed as an action on the 

transition?  

 In CHSM it is the implementation of the event handling routine. However, we would 

like the parameters to be accessible to the state model in its own modelling language, 

not in an embedded implementation language. 

 What if several transitions are triggered by a parameterized event? 

 What parameter passing method is applicable? 

 What if the parameter is not immediately needed, but must be kept for future use? 

 How can the parameters passed be retained in the server for its own use at any time, 

without the client having any knowledge of the server structure? 

 

 

Solution: Parameter passing by call-by-destination 
 

We model the parameterized events by a calling mechanism which we might denote by call-

by-destination or call-by-scoped-variablename-expression. 

 

Program output: 
 

21 2 

21 3 

C++ program source: 
 

#include <iostream.h> 

 

void outint(int& i, int& j) 

{ 

   cout << i << " " << j << endl; 

   j++; 

   cout << i << " " << j << endl; 

} 

 

void main() 

{ 

 int a[5]={1, 11, 21, 31, 41}, j1=2; 

 outint(a[j1], j1); 

} 

 

 

What call-by-name output 

would have been: 
 

21 2 

31 3 
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Figure 17. Parameterized event mechanism 

 

Remarks 
 

1. The basis is that an event can be generated with parameters [e.g. fire 

f1(i+6,$j+j)], and that the receiving transition directs the parameter values to 

destinations of its choosing, using scoped expressions which yield a machine path and 

name [e.g. p1,$servGlob.p2]. This recipient directs its first parameter to the local 

variable p1 and its second one to the neighbouring set member's local variable p2. 

 

2. Not all parameters need be consumed. The serverB machine only uses the first parameter, 

and directs it to its own local variable p1 (which is not the same as serverA's p1). 

 

3. There can be more than one machine that responds to an event. If the parameter 

destinations clash, then the execution order of  responding transitions will determine the 

value of a shared variable at any time. 

 

4. The parameter passing scheme described above does not correspond to any of the 

conventional schemes. One reason is that the receiving transition uses actual name-

expressions rather than formal names. 
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Parameterized events employing implanted functions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Parameterized events with implantable (dynamically modified) function 

models 
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2. Typically, when the functions return, any local variables etc. going out of scope will be 

removed. But any parameter directed to some variable that does not go out of scope will 

remain extant. 

 

3. Servers with function models will typically be modelled by function templates and extra 

parts of a statechart. These might include a global set member and global data 

declarations. 

 

4. The return or notification events of functions can supply a return parameter (or event 

several!) using the same mechanism as for parameters supplied on calling a function. 

 

5. Syntax issues relating to parameterized events are covered in chapter  5. 
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4. Modelling a pump engine 

4.1 Introduction 
 

The concept of a pump is used in Windows, from which is has been adapted for use in MG-R 

[MGR-Pumps]. First, the Windows background is described, then the MG-R equivalent, and 

finally the problem is approached from a more general consumer-producer perspective. 

 

Windows background, based on MFC/C++ documentation 
 

In Windows, a message is sent to a Window using PostMessage, (or SendMessage, 

which will  postpone return of control to the sender until the message has been completely 

processed by the recipient). The message goes to the thread that created the window. There 

will typically be several windows created by one thread. A message is sent to a thread (which 

may not own any windows) using PostThreadMessage. There is no 

SendThreadMessage. The programmer may simply define handlers for messages, but the 

message queue can be accessed directly. MFC's message loop lives in CWinThread::Run, 

which can be overridden. Run “provides a default message loop for user-interface threads. 

Run acquires and dispatches Windows messages until the application receives a WM_QUIT 

message”. Run pumps messages while available by calling PumpMessage, which is an 

‘undocumented function’, and so used or replaced by users at their own peril. It calls 

TranslateMessage and DispatchMessage, and so effectively converts messages into 

function calls. 

 

MG-R pumps and pump engines 
 

[MGR-Pumps] provides the following definitions: 
 

In a nutshell, a pump engine is the combination of: 

 a message queue (with a predefined message format);  

 a Real Time Kernel task (some people call this a thread);  

 a message dispatch loop running on this task.  

So each pump engine corresponds with an RTK task created specifically for that pump engine. 

This task cannot be used for other purposes; its sole purpose is to run the message dispatch 

loop. We shall postpone the discussion of the message format to a later section. 

 

On a pump engine, one must create one or more pumps. Each pump can be seen as a logical 

message queue (with a (simpler) predefined message format) to which a single function (the 

'pump function') is attached. Whenever there is a message in the queue, this function is called. 

The contents of the message are then provided to the function as a set of parameters. 
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MG-R pump engines can be seen as a way to allocate logical queues to physical threads by 

allocating the logical queues to pump engines. A pump engine can support several pumps 

(queues). The pumps have associated with them a single handler function – only one function 

can be called per pump. A message is sent to a pump by calling PmpSend; this function does 

not allow for failure to queue so queue length and average throughput must be correctly 
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This can be expressed in UML as follows 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Pumps and Pump Engines - UML 

 

or more pictorially 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Pumps and Pump Engines - Pictorial 
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The Producer-Consumer Approach 
 

Pump engines are a special case of the more general producer-consumer problem, and it 

from this perspective that we model them. A producer-consumer system is one where 

messages are produced by one thread or task and consumed by another. The threads will need 

to load-balance and synchronize.  

 

A pump engine is a special case where the messages are function calls which just need to be 

executed, but in general the messages might not be so directly processable. We will model the 

messages as events. 

 

Consumer-producer synchronization (and, further below, a semaphore implementation) are 

standard techniques, described for example in [SAD-RTS]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Producer Consumer synchronization 

 

The operations of depositing messages in the queue and extracting them for processing will be 

protected by semaphores (described later). 

 

There are two environments in which a producer-consumer system may operate: 

 Unsuspendable Producer. In real-time situations, such as when processing incoming TV 

frames at the frame-rate, it is not possible to slow the producer down. Other examples are 

incoming web content and Ethernet: the protocols do not allow for suspension of the 

producing machine. The queue sizes and average consumer processing rate must be 

adequate to maintain throughput. MG-R pump engines fall in this category. 

 Suspendable Producer. A non-time-critical producer can be suspended. An elementary  

example is a typical program producing output destined for a disk. The output will be 

buffered, and when the buffer is full, the write call will be delayed in returning control, 

waiting for the free buffer space. This delay stems the output production, so the system as 

 

TASK A 

TASK Z 

TASK B 

message 

queue 

producers 
consumer 



   

© Graham G. Thomason 2003-2004  23
 

a whole is levelled, i.e. the producer is soon balanced in speed to the speed of the 

consumer.
2
  

 

These two environments require separate state-based modelling, since the second one 

involves more states than the first. If a system is implemented with a suspendable producer, 

but nothing of interest ever happens when the producer is suspended, except to unsuspend the 

producer, then the system may be modelled as if it were the first case. Before approaching the 

second case, we will describe the internal semaphoring mechanism. 

 

4.2 Unsuspendable producers 
Messages are modelled as events. We require the following features in the state machine 

system: 
 

 The availability of library functions to queue and dequeue event names. The functions 

might take two parameters: a queue name (= pump in MG-R) and an event name. 

Additional functions to test whether the queue is empty or not, and to remove duplicate 

entries, may be useful in certain circumstances, but are not needed for the basis. 

 The ability to manipulate events: 

- to pass them as a parameter to a queue function call 

- to receive them in a dequeue function call 

- to fire an event received as a parameter. 
 

In manipulating events, two approaches are possible: 
 

1. Implicit event referencing. With this approach, we say that there is no need to have any 

special notation to take the name (or address) of an event, nor to dereference it. The 

following calls suffice: 

queue(alpha), dequeue(evt), fire(evt) 

Here, evt is implicitly a reference to an event. It will be identified as such and implicitly 

dereferenced, in order to fire the event. The function fire(...) is overloaded to take either 

events or references to events. 

 

2. Explicit event referencing. In this case we are more precise about when a quantity is a 

an event and when it is some form of reference to an event. The reference could be made 

- by taking the name of an event, which might be represented by a string (with scope) 

- by taking the address of an event, e.g. &alpha, dereference example *p_alpha 

- by using the C++ reference operator (&) which is effectively internally an address-of 

operator, but a quantity thing& is type compatible with thing , i.e. with what it 

references, not type compatible with &thing (pointer-to-what-is-referenced). 

 

For clarity we use the address-of and dereference convention in the diagrams, so we have 

queue(&alpha), dequeue(p_evt), fire(*p_evt) 

                                                     
2
 A refinement to this model prevents thrashing. Thrashing in this case is the rapid alternation of 

allocating and releasing a small amount of buffer, thus incurring a high system overhead. Thrashing 

can be prevented by only returning to the producer when a fair amount of buffer is available. 
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However, we overload fire, so that we can write 

fire(p_evt) 

 

Parameters to events 
 

In either case the events and references to events must be parameterizable. Chapter  3 

describes how events can be parameterized; an example using queued events is: 

queue(&eta(p1,p2+1)), 

dequeue(p_evt(q1,q2)), 

fire(p_evt(q1,q2)) 

 

Parameters could be stored in queued functions 

 as expressions to be evaluated at function execution time 

 as values evaluated at queuing time. 

We opt for evaluation at queuing time. Evaluation at execution time can be engineered by 

supplying pointers to data and evaluating the required expressions in the function body, rather 

than in the call. 

 

Synchronous versus Asynchronous calls 
 

The technique described below is applicable to synchronous and asynchronous calls, and we 

show a case of one of each kind of call being processed. Note that the terms synchronous and 

asynchronous are from the server's (i.e. consumer's) perspective (typically representing the 

consumer's thread), not with respect to the client's (i.e. producer's) perspective. 
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Figure 22. Unsuspendable Producer 
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Explanation and notes on unsuspendable producers 
 

1. We employ the method of processing synchronous and asynchronous calls as described in 

the preceding chapters, but the initiator of the calls is now the consumer (state q_idle). 

There is a synchronous return event that is local to the consumer so that it can be 

returned to its idle state. A synchronous function completion will normally be visible as 

both a local return to the local caller and as a global notification to the client originator. 

This has been implemented by firing two separate events ($return and ::g_return). 

 

The asynchronous notification event is global, (::f_return) so that it will be in scope 

for the client whever the client is in the scoping space. All functions need to use unique 

names for notification events. By unique names, we mean unique after any transformation 

due to component binding. Asynchronous functions may need to issue an additional 

return event, which should be called $async_return, to enable a distinction and not 

interfere with synchronous calls. This is used when considering nondeterministic 

suspension of a consumer later on. 

 

2. Once started, this consumer engine will continue to dequeue and process events until the 

queue is empty. This is achieved by having an orbital self-transition on q_idle, with an 

upon enter action firing a new start event after each event has been despatched 

(whether representing a synchronous or asynchronous function). If the queue is empty, a 

non-orbital self-transition takes place and the queue is not re-started.  

 

3. In this example we leave it to clients to explicitly start the queue. An automatic way to 

start the queue would be for the queue library routine to start the queue. There may be 

situations where fine control is needed of exactly when the queue is started, perhaps 

reflecting thread priorities, so it appears best to leave firing the start queue event to the 

user. 

 

4. Note that a synchronous function call blocks the consumer until completed. 

 

5. The technique can be generalized for several consumers by allowing for a queue name as 

an extra parameter to a queue call. 

 

6. Note that the client, having queued an event, is not blocked in any way, whether the call 

will be run synchronously or asynchronously by the consumer.  
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4.3 Suspendable producers 
 

 Figure 23, based on [SAD-RTS] course material, illustrates how messages are deposited and 

extracted using semaphores. It shows the two reasons why a client might be suspended: 
 

 Lack of buffer space in the queue. In this case, the client will have to wait until the 

consumer has consumed one (or more) messages. 

 

 Consumer is busy with buffer manipulation. This is typically a very short operation as 

first-in first-out queues can be implemented such that for any length of queue a deposit or 

extract process takes a fixed amount of processing which is independent of the length of 

the queue. US patent 6,018,612 (Thomason & van Loon) describes such a method (but 

this is not part of the invention). In the scheme described there, buffer insertion requires 

following one fixed pointer one step, testing a value for zero, and making two 

assignments. Buffer extraction requires following one fixed pointer one step, testing for 

zero, and making one assignment. Inserting into an empty buffer, and extracting the last 

message, will show an affirmative test-for-zero condition and will require minor 

variations. 

 

The lack-of-buffer situation can lead to deadlock, e.g. if a message being consumed 

synchronously requires an event to progress, but where that event must come from the 

blocked client. 

 

The buffer manipulation operation in itself cannot lead to deadlock, as it is just a matter of 

time before the critical operation is complete and the semaphore is released. It is probably 

often adequate to consider the theoretical buffer-manipulation-busy state as indivisible, so that 

it would not need a separate modelled state. 

 

The fact that the consumer may be waiting for a message has been handled by the startq 

event. The consumer may also be waiting for the buffer manipulation semaphore to be 

released, but again this is just a matter of time, and it may well be acceptable to model it as an 

indivisible situation. 

 

There are alternative abstractions
3
 of, and implementations

4
 of the consumer-producer 

synchronization problem, but a client wait situation will be a common result. 

 

In our consideration of the situations we simply allow for modelling of one client waiting 

state. 

                                                     
3
 E.G. Petri-nets, Ada's Rendez-vous 

4
 Semaphore-style synchronization can be implemented in, say, C without any operating support. 

References: [Harel] and http://courses.cs.vt.edu/~cs3204/spring2001/cstruble/notes/chapter8.pdf 



   

28  © Graham G. Thomason 2003-2004 

 

 

Figure 23. Detail of Synchronization using 3 semaphores 
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What needs to be modelled for a suspendable producer? 
 

If a consumer may become suspended, and from a testing perspective the occurrence of this 

situation can be engineered in the SUT (System Under Test), then the state-based model will 

need to allow for precise control of whether suspension takes place or not. This can be done 

by using 

 a boolean variable to determine whether suspension takes place 

 an extra event, fired externally to simulate a repeated attempt at queuing the event to be 

queued. 

We call this the deterministic case. 

 

If the SUT cannot be controlled as to whether the consumer is suspended, then a 

nondeterministic model may need to be made. This is considered after the deterministic case. 

 

An example of deterministic modelling follows, with q_ok as the boolean variable to control 

whether the consumer is suspended, and β as the extra event. 
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Figure 24. Deterministic suspension of consumer 
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Nondeterministic modelling of a suspendable consumer 
 

If a consumer may become suspended, but from a testing perspective it is not possible to 

predict whether this will happen, then a nondeterministic approach may be required.  

 

An example is given in the following figure. 

 

Explanation and notes on a nondeterministically suspendable consumer (see figure following) 

 

1. In this figure, function d is some previously activated asynchronous function, and it is 

when this completes that waiting clients may be able to queue their messages. 

 

2. Event α is the event that makes the client want to queue a message. Event 

::server.async_return is generated outside the client and provides another 

opportunity for the client to queue a message after having previously failed. Note the 

fork-nondeterminism on events α and ::server.async_return. 

 

3. Asynchronous functions need to fire a $async_return event (as used above) in 

addition to their globally unique notification. This is used to effect a retry-to-queue by 

clients that failed to queue something the first time. If there are several servers for 

different queues, then clients must make sure that their ‘retry’ events are the ones from 

the server that will handle the event being queued by the client. 

 

4. This technique could lead to many deadlocked worlds where the client is (unrealistically) 

suspended, because there are no actively dispatched functions claiming the buffer space. 

However, there will always be one world that corresponds to the observed behaviour of  a 

correctly-behaving client. 

 

5. An alternative technique for retrying to queue is to periodically retry. This can be very 

inefficient, since many retries may be made when there is no chance of success (because 

nothing relevant has happened), or conversely a golden opportunity may arise and not be 

taken until after a considerable delay. This technique is not further considered in this 

report. 
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Figure 25. Nondeterministic suspension of a consumer 
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5. Summary of syntax issues 

Bound synchronous function calls 
 

Functions will initially be implemented in PROLOG according to the STATECRUNCHER 

function API.  Future development could be 

- to support C more fully 

- or to interface to dynamic link libraries, (giving a measure of language independence) 

- to interface to COM components (giving better language independence) 

 

Synchronous versus asynchronous function calls 
 

The distinction between synchronous and asynchronous functions is in made on the server-

side, i.e. in the representation of the function model, not the transition into it. However, the 

client will need to know whether it is calling an synchronous or asynchronous function 

because the client models responding to events are different, the asynchronous case requiring 

an explicit intermediate ‘called’ state. 

 

Unbound synchronous function calls 
 

 Implantable state models of the state behaviour are compiled as (freestanding) standard 

statecharts with the keywords synchronous statechart 

 See below for syntax relevant to synchronous and asynchronous function calls. 

 

Asynchronous function calls 
 

 Implantable state models of the state behaviour are compiled as (freestanding) standard 

statecharts with the keywords asynchronous statechart  

 There is no need to syntactically identify notifications as such as the pertinent factor is 

that they are on a transition to a terminator. 

 See below for syntax relevant to synchronous and asynchronous function calls. 

 

Synchronous and asynchronous function calls 
 

 Transitions to function calls are recognized by the event name on the transition matching 

the (freestanding) statechart name 

 Initially, only one transition on creation will be supported, so no new syntax is needed to 

specifically identify such transitions in the function model. 

 The end state is recognized by the keyword void. 

 

Parameterized events 
 

 Fired events can be followed by a parameter list, e.g. fire alpha(v1+1,v2) 

 Events that trigger transitions can be given a destination parameter list, e.g. 
alpha(p1,$$p2) 
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 Synchronous and asynchronous functions can be followed by a parameter list after  the 

statechart name and the child-list , e.g. 
 asynchronous statechart sc(child1,child2)(::q1,child1.q2) 

 

Pump engine modelling 
 

For pump engine modelling, the extensions needed to the state-modelling tool 

STATECRUNCHER are: 

 Library functions to support FIFO (First-In First-Out) queues: an enqueue, a dequeue 

a test-queue, and a remove_duplicates routine. Others can be added as the 

need arises. Unless they require some new type of parameter, they do not affect the 

underlying STATECRUNCHER syntax. 

 Pointers to data, so that function parameters can be evaluated at function execution time 

rather than function queuing time. This is a matter of extending the operator set and 

expression evaluator. 

 Pointers-to-events, or references to events. Again, this is a matter of extending the 

operator set and expression evaluator. The function fire will be overloaded to accept, and 

automatically dereference, pointers to events.  

 

None of these requirements materially impact the STATECRUNCHER language as such. 

 

Models of synchronous and asynchronous functions will normally adhere to the convention 

that they provide a global return event (with a unique name) and a local return event 

($return and $async_return) respectively. 

 

Models allowing for nondeterministic suspension of a consumer may need to make provision 

for retrying-to-queue. They can do this by providing a transition that triggers off 

async_return events in the scope of the pump engine that will handle this consumer's 

message. 
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