

State-based Modelling of Functions and

Pump Engines

Graham G. Thomason

Report Relating to the Thesis “The Design

and Construction of a State Machine

System that Handles Nondeterminism”

Department of Computing

School of Electronics and Physical Sciences

University of Surrey

Guildford, Surrey GU2 7XH, UK

July 2004

© Graham G. Thomason 2003-2004

ii © Graham G. Thomason 2003-2004

 Summary

Many problems of integration testing can be addressed if adequate state-based models are

available. This paper discusses how to model the queuing, dequeuing and dispatching of

function-call messages as processed by a pump engine. A few extensions to the standard

state-based paradigm are introduced from the domain of conventional imperative languages

and techniques such as "C".

© Graham G. Thomason 2003-2004 iii

Contents

1. Introduction .. 1

2. Modelling function calls ... 3

2.1 Synchronous function calls .. 3

2.2 Asynchronous function calls .. 9

2.3 Mixed synchronous / asynchronous calls ... 14

2.4 Syntax issues for synchronous and asynchronous function calls 14

3. Parameter passing ... 15

4. Modelling a pump engine ... 20

4.1 Introduction .. 20

4.2 Unsuspendable producers ... 23

4.3 Suspendable producers ... 27

5. Summary of syntax issues .. 33

6. References .. 35

© Graham G. Thomason 2003-2004 1

1. Introduction

The emerging solution to the ‘software crisis’ – the runaway complexity, size and lead time of

software systems – is component-based synthesis of systems. Microsoft has deployed COM

for a number of years. Philips is applying the basic concept to embedded systems (e.g. Koala

in CE, and a component-like API in DVP-2). Technically, components provide for system

modularity, customisability, maintainability and upgradeability. Commercially, they provide

a market in software modules based on open standards, but with protection of proprietary

implementation details. For Philips Semiconductors, this gives opportunities to market re-

usable software. For Consumer Electronics, this provides a way to build large systems by

selecting and binding components from repositories, rather than by writing millions of lines

of code.

The hard part is integration testing of systems built from components, typically from

different suppliers (so with fair scope for disparate interpretations of the interfaces and other

incompatibilities). Integration testing is essential to achieve a reliable system [Trew]. Since

the primitive elements of components are functions (organized in interfaces), good modelling

capabilities of functions are an important pre-requisite to adequate component modelling.

Multi-threaded systems, such as television systems, (including the MG-R software

architecture), typically need to queue function calls, and to do this they make extensive use of

pump engines. Pump engines can be encapsulated in software components –with all the

concomitant advantages and disadvantages of this upcoming technology.

The author's earlier report, [CompBinding], focused on component composition and

introduced a concept for handling recursive functions. The present report builds on that

concept with the aim of designing a developer-friendly way of specifying the state behaviour

of synchronous and asynchronous functions which may be self- or mutually recursive, and

which may be pumped. The issue of how the models can be implemented in a state machine

engine such as STATECRUNCHER is also considered.

The motivation for work on state-based modelling, in particular function modelling, is the

need for automated integration testing of systems built using component technology.

Examples of component-based approaches within Philips are Koala [Koala, KoalaYP] in CE,

and DVP-2 [vAntwerpen, Kunst] in Semiconductors.

Further, the report describes how a pump engine can be modelled, i.e. the queuing, dequeuing

and dispatching of function calls.

STATECRUNCHER, a language and engine for modelling state behaviour, has been designed for

integration testing of software components [StCrMain]. This report is written from a

2 © Graham G. Thomason 2003-2004

perspective of how the techniques presented might be realized in STATECRUNCHER (of which

some knowledge is assumed).

The state diagram notation is as described in [StCrMain], which is largely compatible with

UML notation. In places an abbreviated syntax will be used, (particularly for actions, which

simply follow the symbol ‘/’, rather than using surrounding braces and the keyword fire

before events). Declarations of events and variables are indicated by the following symbols.

Figure 1. Symbols for variable and event declarations.

A typical component scenario for function call and parameterized event methods is as shown

below:

Figure 2. Component-based system

Component A will call functions in component B and vice versa. But the models of A and B

(for simulation and testing) will not know who their clients are. Components may contain

pump engines and so support queuing of functions to be dispatched later.

component B

instantiate

configurator

component A

instantiate

Each component ‘requires’ an

interface pointer. Configurator

supplies this.

ef1

 p1

variable declaration

event declaration

© Graham G. Thomason 2003-2004 3

2. Modelling function calls

2.1 Synchronous function calls

In a synchronous function call the function executes on the caller's thread. When the function

returns, it is regarded as complete. Clearly, the caller cannot make a second function call until

a synchronous call completes, since the thread of control is not available.

Within the category of synchronous function calls, we can distinguish between bound calls

and unbound calls.

Bound calls

A bound call will run to completion without requiring any more events to drive it to

completion. It is typically CPU-bound – an example is a function to find the maximum of a

list of numbers. Alternatively it might involve some activity which frees up the CPU (e.g. by

performing some I/O), but the execution is regarded as predetermined rather than dependent

on the presence of an event. If the function call is not modelled as an atomic occurrence, i.e. if

there can be an intervening event between start and completion, then the call is better

modelled as an unbound one (see below).

A bound call can be modelled as a simple library function in an assignment action on a

transition:

Figure 3. Bound call

A bound call (like other kinds of call) is capable of firing other events. A standard library

module will provide for this.

b

α/m=max(a,b,c,d)

;
a

4 © Graham G. Thomason 2003-2004

Unbound calls

An unbound call requires the occurrence of at least one additional event to drive the function

to completion. For example, if a function obtains input from a user, we might model it as

requiring the event "input_obtained" to complete it.

We initially consider the easier case of restricting the user to one call per transition. We make

single implantations per set member on the call. The figure below illustrates the process, with

explanations following.

Figure 4. Implementation of unbound synchronous calls

system

server

client

response to other events

generated by the function calls

b

a

c

system

server

client

response to other events

generated by the function calls

b

a

c

α/g
before

g

after

g

α/g
before

g

return

after

g

gb
ga γ1

γ4/$return,

optionally also ::g_return

gc

γ2

g

γ3

S

α/f
before

f

after

f
return

fb fa
φ1

φ3/$return,

optionally also ::f_return

fc

φ2

f
S

f

g

α/f
before

f

after

f

© Graham G. Thomason 2003-2004 5

Explanation and notes on synchronous calls:

1. The optional fired events on the right hand side of the above figure, marked “optionally

also ::f_return” and “optionally also ::g_return” are included for completeness

because they would be needed in the event of a pumped call. The “::” indicates global

scope. Pumped calls are discussed in chapter 4. These optional events do not play a role

in the present discussion.

2. Two options were considered for representing the client side call –one with an

intermediate "calling" state and one without, illustrated below, but both corresponding to

the same implementation in principle. The second is perhaps more developer friendly, and

we adopt it in general in this report.

Figure 5. User options considered for synchronous calls

3. The arrow indicates the dynamic transformation of the state machine when the

event occurs. A new state machine element is implanted on the calling event - indicated

by . It is not adequate to perform a static implantation of the function (e.g. at

compile time) as some functions will be recursive; it is only at run-time that the

termination condition can be identified and executed. Note that the tip of the transition is

to the newly created element, (not the state indicated by the user, which will be reached

on function completion).

4. The clusters marked <S> are implanted on call as mentioned and removed on completion.

The S stands for Synchronous, and is a variation of the <R> for Recursive of

[CompBinding].

α/f
before

f

calling

f

after

f return

α/g
before

f

after

f

α/f before

f

after

 f
return

fb fa
φ1

φ3/$return

fc

φ2

f
S f

 first option -

explicit calling state

must be put in

second option - no

explicit calling

state

the implementation is the same for

either option

6 © Graham G. Thomason 2003-2004

5. The standard notation shows what state is entered on creation of the implantation.

Figure 6. State entered on implantation creation

Functions do not remember state history from one invocation to another.

6. The notation (which we call a terminator) indicates that the implantation is to be

removed after a transition entering it. Suggested syntax for this symbol: the keyword

void. There can be several separate transitions to the terminator.

7. Just as only one default state is allowed in conventional state machines, so there should

only be one initial state in implantable machines.
1
 If necessary, fork nondeterminism can

be applied on the next transition.

Figure 7. Equivalent model for nondeterministic initial state

8. Although the implantations shown are clusters, they could be sets (parallel state

machines), or possibly leaf-states.

1
 If multiple default states on nonexclusive entry conditions were supported, this would entail

nondeterminism, "default state fork nondeterminism".

α/f

before

f

fa
etc is

equivalent

to

α/f

before

f

fa

etc

S S f f

α/f

before

f

fa [c]
etc

fb

α/f

before

f

fa

etc

multiple default states

not supported (as currently envisaged).

Equivalent model. Entails ordinary

fork nondeterminism if conditions are

nonexclusive

etc
[!c]

α
α[c]

α[!c]

etc

S S f

α

f

© Graham G. Thomason 2003-2004 7

9. Whatever the option chosen for the user representation, the implementation could be

make use of the technique used by asynchronous calls. This is described in detail in

section 2.2; it amounts to the following in this case:

Figure 8. Synchronous implemented compatibly with asynchronous

The user cannot make use of any apparent asynchronous functionality here, because the

state marked calling_g (or some system-generated name) and is not accessible for

any other transitions. The client is locked in this state until the return event is fired.

Multiple synchronous function calls

If several synchronous calls are put on transition, they are necessarily to be interpreted as a

sequence. The implementation can translate this into a chain of transitions, either built up in

one go or created step by step. The principle is illustrated in the following figure.

Figure 9. Multiple Sequential calls - automatic intermediate states (1)

α/g

before

_g

after

_g

α/g

before

_g

return

after

_g

gb
ga γ1

γ4/$return

gc

γ2

g

γ3

S

calling

_g

g

α/f

after

_fg

fb fa
φ1

φ3/$return

fc

φ2

f
S

gb
ga γ1

γ4/$return

gc

γ2

g

γ3

S
return/g

return

α/f,g

after

_fg
 before

_fg

g f

before

_fg

8 © Graham G. Thomason 2003-2004

If the sequence of actions contains a mixture of function calls and other actions, e.g.
α/f, x=p+q, g,y=z, β, h , x=x+1

where f, g, and h are function call events, but β is just a global event, then chaining must put

the non-function-call actions on the linking transitions:

Figure 10. Multiple Sequential calls - automatic intermediate states (2)

The exact sequence (or: micro-step) in which the non-function-call actions, including the

initial one, take place, is dependent on the precise transition algorithm. This is not discussed

further in this report.

α/p=2,f

after

_fgh

ga

γ4/$return

gc

g

γ3

S

return/x=x+1

α/p=2,f, x=p+q, g,y=z, β, h,

x=x+1 after

_fgh
 before

_fgh

fb
fa

φ1

φ3/$return

fc

φ2

f
S

ha

χ1/

$return

h
S

γ1

return/x=p+q,g return/y=z,β,h

f
g h

 before

_fgh

© Graham G. Thomason 2003-2004 9

2.2 Asynchronous function calls

An asynchronous function call provides return of control to the caller, called a pending return,

but the function will continue to do some (or all) serious processing on another thread. When

the processing associated with the call is complete, the function provides a notification. It is

possible that intermediate and final notifications are given, perhaps indicating phases of

processing, but any final notification will mean that no more notifications can come from this

function invocation. The intermediate notifications can just be regarded as ordinary broadcast

events.

An asynchronous function may, depending on run-time circumstances, provide either a

synchronous-like completion or a pending return with later notification. Take for example a

request for a web page. If the page is in cache, it may be quickly returned with completion.

Otherwise, the function will return pending, access the page over the Internet, and notify

when it has been obtained.

It is possible to have several asynchronous function calls outstanding at any one time, each

running on their own thread. For this reason, in a state model, the caller and all called

functions must be able to transition independently. Also, we must have some way to

distinguish pending, notify and other events; if they are simply called e.g. notify, there will

be ambiguity as to which function produced it (unlike the synchronous function case).

Solutions might be to parameterize the events or to use names related to the function name.

Implementation

When an event representing an asynchronous call is processed, a state-machine element is

implanted (as in the unbound synchronous case), but with a special status indicated by a

double perimetral line. The ‘special status’ ensures that the implantation has a specific scope

that is effectively local to the caller, and a lifetime that is independent of that of caller. This is

discussed further in the notes following the figure.

For multiple function calls, a temporary implantation of a machine element is performed per

function called.

The next figure illustrates the principle, with explanations following.

10 © Graham G. Thomason 2003-2004

Figure 11. Implementation of asynchronous calls

system

server

f_

reset

f_

notif

reset

f_

pend

pending_f

gb

ga γ4

γ5/::final_notif_g,

optionally also

$async_return

gd

γ2/::pending_g

fb

fa

φ1

φ3/::final_notif_f,

optionally also

$async_return

fc

gc

g

γ3/

::final_notif_g

g_

reset

g_

notif

reset

g_

pend

pending_g

system

server

reset,α/f,g

before

all_

notif

f & g

 called

in(f_notif)

&&

in(g_notif)

f_

reset

f_

notif

final_notif_f

reset

f_

pend

pending_f

g_

reset

g_

notif

final_notif_g

reset

g_

pend

pending_g

client client

f

φ2

g

A

A

do not omit

this state

Scoped as if cluster members

Occupancy overrides cluster rules

f_pnd

pending_f

f_pnd

pending_g

Note specific and

generic handling.

a complete model

reset,α/f,g

before

all_

notif

f & g

 called

in(f_notif)

&&

in(g_notif)

f_pnd

pending_f

f_pnd

final_notif_f final_notif_g

f

g

/pending_f

More transitions would be

needed in a complete model

© Graham G. Thomason 2003-2004 11

Explanations and notes on asynchronous calls:

1. Notification events are global (indicated by the “::” operator). This ensures that all

recipients will see them, –but the name must be unique. The optional fired events on the

right hand side of the above figure, marked “optionally also $async_return” are

included for completeness because they would be needed in the event of a pumped call.

Pumped calls are discussed in chapter 4. These optional events do not play a role in the

present discussion.

2. Asynchronous functions need to be distinguished syntactically from synchronous calls,

perhaps by the keywords synchronous and asynchronous.

3. The implanted machine elements, marked <A>, (for Asynchronous) have the scope of

being a sibling of the element at the tip of the transition arrow. The scope is not related to

the effective source (leaf-)state, nor the orbital state (if present). This fixed policy should

facilitate precise targeting of broadcast events and variables where scoping operators are

used.

Figure 12. Scope of implantation

4. The implanted machine elements, marked <A>, and with a double perimetral line, could

be regarded as extra active members, of their parent. Thus in the case of the parent being

a cluster, they break the ordinary rule that only one active member is allowed in a

cluster. However, the implantation can perhaps better be thought of as rather independent

of its machine-path parent, since it has an independent life-cycle. The parent may not

have the implantation marked as a child, so that the implantation will not take part in

algorithms which examine a parent's children. In this way, a cluster can be exited, for

example, without interfering with the life-cycle of the implanted member.

implantation is

always in the scope

of this space

a
α/f

p1

p2

q1

q2

p q

b

x1

x2

y1

y2

x y

12 © Graham G. Thomason 2003-2004

Note that if we were to avoid breaking the ordinary rule, we might consider placing the

implantation as a co-set member w.r.t. the caller, which would be one level too high, as it

would not identify which co-set-member the caller was.

Figure 13. Implantation as a co-set-member is at a level too high

Another attempt to avoid breaking the cluster rule is to wrap the caller in a new set, with

the function implantations as co-set-members. Although this preserves the cluster rule, it

changes the scope of the caller, (making the machine path one level deeper), and so

makes scoping and targeting the caller, (from anywhere else in the entire state machine)

difficult. Therefore, this has to be rejected as well.

Figure 14. Wrapping the caller as a set changes its scope

5. The lifecycle of an implanted asynchronous function is independent of the lifetime of any

other machine. It is only destroyed when the transition to the terminator (symbol)

takes place. Even if a parent is another function and is destroyed, the asynchronous

function lives on until it transitions to its own terminator.

if the calling scope is here...

and the implantationa are in set co-

members created here...

then the implantation could equally well

have come from a caller located here

and so is insufficiently localized

α/f,g

b a

f

g

p q r

i j k l

caller member

α/f,g

b a

α/f,g

b a

f

g

p q r

i j k l

wrapped caller

- but scope has

changed

called

functions

implanted

e.g. another module

 etc.

© Graham G. Thomason 2003-2004 13

6. Additional intermediate notifications can be included as well as a final notification. Only

the final notification corresponds to the function implantation being removed, but the way

the system knows that the implantation is to be removed is by the fact that the transition

is to a terminator. From an implementation perspective, even a final notification will

behave like any other broadcast event.

7. As already mentioned, vents such as "pending" and "notify" need to identify the function

they apply to by their name. But what if same function called twice in the same scope

(there are various ways this might happen) - how to disambiguate broadcast events from

each. Solution: Parameterize events to disambiguate.

8. More deeply nested parts of the implanted machine, if present, must use e.g. a $$ scoping

operator when targeting fired events at the caller.

9. Note how a generic transition on in(f_notif) && in(g_notif) and other

specific transition paths out of the calling state are possible (though the above is a lambda

event, not currently envisaged to be supported).

14 © Graham G. Thomason 2003-2004

2.3 Mixed synchronous / asynchronous calls

If a transition contains calls to synchronous and asynchronous functions, implantations of the

relevant kind can be provided systematically, as indicated in the following example. Events

σ,τ,υ are synchronous functions, events α β are asynchronous functions, and other events

(ε ζ1-ζ6 and return events) are ordinary global events.

Figure 15. Mixed synchronous / asynchronous calls

Again, the synchronous functions could be implemented using the asynchronous technique.

2.4 Syntax issues for synchronous and asynchronous function calls
In order to have a focussed overview of all syntax issues resulting from all the techniques

described in this report, syntax issues are discussed separately in chapter 5.

 ε/ζ1,σ,ζ2,α,ζ3,β,ζ4,τ,ζ5,υ,ζ6

after before
(function calls in bold)

 ε/ζ1,σ

before after

return/ζ6

return/ζ2,α,ζ3,β,ζ4,τ

s1

σ4/$return

s2

σ
S

σ2

σ3

a1

α4/

::α_return

a2

α
A

α2

α3

b1

β5/

::β_return

b2

β
A

β4
β3

t1

τ4/$return

t3

τ
S

τ2

τ3
t2

u1

υ4/$return

u2

υ
S

υ2
υ3

return/ζ5,υ

σ

α β

τ υ

© Graham G. Thomason 2003-2004 15

3. Parameter passing

Review of conventional parameter passing techniques

For imperative languages (such as Fortran, Algol, C++ and Java), functions, (or procedures),

are defined with a formal parameter (or argument) list, e.g.
int max(int p1, int p2, int p3) ...

When they are called, actual parameters are supplied, e.g.

 high=max(i,*pj,k+6);

The function might handle the parameters in various ways [vVliet]:

 Call by value. The parameters are evaluated and the results are assigned to local

variables, which are accessed using the formal parameters. The caller's variables are not

altered this way, except where a pointer is passed and an indirect assignment is made.

 Call by value-result (or call by copy-restore). As with call by value, the parameters are

evaluated and the results are assigned to local variables, which are accessed using the

formal parameters. At the end of the procedure, the actual parameters are assigned the

final value of the local variables, so changing the value of the caller's variables.

 Call by reference. Here, the actual parameters are evaluated once and this result is

substituted where the formal parameters occur. Any assignment to a formal parameter

results in an assignment to the actual parameter, and so changes the caller's variables.

 Call by name. Here, the actual parameters are substituted in unevaluated form wherever

the corresponding formal parameters occur. Any assignment to a formal parameter results

in an assignment to the actual parameter, and so changes the caller's variables.

Fortran uses call by reference or call by value-result.

Java uses call by value, (though the caller's value is itself a reference).

C++ prefers the use of call by reference, illustrated below.

16 © Graham G. Thomason 2003-2004

Figure 16. Call by reference versus call by name

Problem statements

Fired events are used to model function calls, and it seems logical that the parameters of a

function call should be modelled by parameters to the event. However, the caller and callee of

a function call are typically in separate software components (client and server). The

following questions arise:

 What is the recipient of a fired event? Is it the transition? Is it the target state? What if

there is more than one target state? Is it some code executed as an action on the

transition?

 In CHSM it is the implementation of the event handling routine. However, we would

like the parameters to be accessible to the state model in its own modelling language,

not in an embedded implementation language.

 What if several transitions are triggered by a parameterized event?

 What parameter passing method is applicable?

 What if the parameter is not immediately needed, but must be kept for future use?

 How can the parameters passed be retained in the server for its own use at any time,

without the client having any knowledge of the server structure?

Solution: Parameter passing by call-by-destination

We model the parameterized events by a calling mechanism which we might denote by call-

by-destination or call-by-scoped-variablename-expression.

Program output:

21 2

21 3

C++ program source:

#include <iostream.h>

void outint(int& i, int& j)

{

 cout << i << " " << j << endl;

 j++;

 cout << i << " " << j << endl;

}

void main()

{

 int a[5]={1, 11, 21, 31, 41}, j1=2;

 outint(a[j1], j1);

}

What call-by-name output

would have been:

21 2

31 3

© Graham G. Thomason 2003-2004 17

Figure 17. Parameterized event mechanism

Remarks

1. The basis is that an event can be generated with parameters [e.g. fire

f1(i+6,$j+j)], and that the receiving transition directs the parameter values to

destinations of its choosing, using scoped expressions which yield a machine path and

name [e.g. p1,$servGlob.p2]. This recipient directs its first parameter to the local

variable p1 and its second one to the neighbouring set member's local variable p2.

2. Not all parameters need be consumed. The serverB machine only uses the first parameter,

and directs it to its own local variable p1 (which is not the same as serverA's p1).

3. There can be more than one machine that responds to an event. If the parameter

destinations clash, then the execution order of responding transitions will determine the

value of a shared variable at any time.

4. The parameter passing scheme described above does not correspond to any of the

conventional schemes. One reason is that the receiving transition uses actual name-

expressions rather than formal names.

myset

client1 serverA
α/f1(i+6, j+$j)

before
calling

r1

f1(p1, $servGlob.p2)

done

idle

s1

s2

serverB

servGlob

γ/r1

t1

t2

 p1

β

 p2

 p1

f1(p1)

idle

s2

γ

β

γ

 j

 j

client side

evaluated

parameter

server side

parameter

destinations

18 © Graham G. Thomason 2003-2004

Parameterized events employing implanted functions:

Figure 18. Parameterized events with implantable (dynamically modified) function

models

Remarks

1. The two clients obtain an equivalent implanted model of the server function model. The

function models direct one parameter to a local variable and one to a global variable. The

function model does not show actual use of the variables p1 (in two contexts) and

pglobal - but use could be in the form of conditions on transitions or actions, further

assignments, or further fired events.

system

client1

α1/mf1.ef1(i+j,2*k)

before

calling

after
return

client2
α2/mf1.ef1(i+1)

before

calling

after
return On function call, the model is temporarily

dynamically modified into the following:

return

return

 pglobal

system

client1

α1/mf1.ef1

befor

e

after
return

client2

α2/fire mf1.ef1

before

after
return

return

return

 pglob

ef1(p1,pglob)

γ/$return

f1_a f1_b

mf1

β

ef1  p1

S

ef1(p1,pglob)

γ/$return

f1_a f1_b

mf1

β

ef1  p1

S

ef1(p1,pglob)

γ/$return

f1_a f1_b

mf1

β

ef1  p1

S

© Graham G. Thomason 2003-2004 19

2. Typically, when the functions return, any local variables etc. going out of scope will be

removed. But any parameter directed to some variable that does not go out of scope will

remain extant.

3. Servers with function models will typically be modelled by function templates and extra

parts of a statechart. These might include a global set member and global data

declarations.

4. The return or notification events of functions can supply a return parameter (or event

several!) using the same mechanism as for parameters supplied on calling a function.

5. Syntax issues relating to parameterized events are covered in chapter 5.

20 © Graham G. Thomason 2003-2004

4. Modelling a pump engine

4.1 Introduction

The concept of a pump is used in Windows, from which is has been adapted for use in MG-R

[MGR-Pumps]. First, the Windows background is described, then the MG-R equivalent, and

finally the problem is approached from a more general consumer-producer perspective.

Windows background, based on MFC/C++ documentation

In Windows, a message is sent to a Window using PostMessage, (or SendMessage,

which will postpone return of control to the sender until the message has been completely

processed by the recipient). The message goes to the thread that created the window. There

will typically be several windows created by one thread. A message is sent to a thread (which

may not own any windows) using PostThreadMessage. There is no

SendThreadMessage. The programmer may simply define handlers for messages, but the

message queue can be accessed directly. MFC's message loop lives in CWinThread::Run,

which can be overridden. Run “provides a default message loop for user-interface threads.

Run acquires and dispatches Windows messages until the application receives a WM_QUIT

message”. Run pumps messages while available by calling PumpMessage, which is an

‘undocumented function’, and so used or replaced by users at their own peril. It calls

TranslateMessage and DispatchMessage, and so effectively converts messages into

function calls.

MG-R pumps and pump engines

[MGR-Pumps] provides the following definitions:

In a nutshell, a pump engine is the combination of:

 a message queue (with a predefined message format);

 a Real Time Kernel task (some people call this a thread);

 a message dispatch loop running on this task.

So each pump engine corresponds with an RTK task created specifically for that pump engine.

This task cannot be used for other purposes; its sole purpose is to run the message dispatch

loop. We shall postpone the discussion of the message format to a later section.

On a pump engine, one must create one or more pumps. Each pump can be seen as a logical

message queue (with a (simpler) predefined message format) to which a single function (the

'pump function') is attached. Whenever there is a message in the queue, this function is called.

The contents of the message are then provided to the function as a set of parameters.

© Graham G. Thomason 2003-2004 21

pump engine
runs on

thread
1 *

pump
*

handler

function

represents a

logical queue

dispatcher

supports

MG-R pump engines can be seen as a way to allocate logical queues to physical threads by

allocating the logical queues to pump engines. A pump engine can support several pumps

(queues). The pumps have associated with them a single handler function – only one function

can be called per pump. A message is sent to a pump by calling PmpSend; this function does

not allow for failure to queue so queue length and average throughput must be correctly

budgeted.

This can be expressed in UML as follows

Figure 19. Pumps and Pump Engines - UML

or more pictorially

Figure 20. Pumps and Pump Engines - Pictorial

pump

engine 2

pump

engine 3

pump

engine 1
thread 1

logical queue 1

thread 2

thread 3

logical queue 2

logical queue 6

logical queue 7

logical queue 3

logical queue 4

logical queue 5

22 © Graham G. Thomason 2003-2004

The Producer-Consumer Approach

Pump engines are a special case of the more general producer-consumer problem, and it

from this perspective that we model them. A producer-consumer system is one where

messages are produced by one thread or task and consumed by another. The threads will need

to load-balance and synchronize.

A pump engine is a special case where the messages are function calls which just need to be

executed, but in general the messages might not be so directly processable. We will model the

messages as events.

Consumer-producer synchronization (and, further below, a semaphore implementation) are

standard techniques, described for example in [SAD-RTS].

Figure 21. Producer Consumer synchronization

The operations of depositing messages in the queue and extracting them for processing will be

protected by semaphores (described later).

There are two environments in which a producer-consumer system may operate:

 Unsuspendable Producer. In real-time situations, such as when processing incoming TV

frames at the frame-rate, it is not possible to slow the producer down. Other examples are

incoming web content and Ethernet: the protocols do not allow for suspension of the

producing machine. The queue sizes and average consumer processing rate must be

adequate to maintain throughput. MG-R pump engines fall in this category.

 Suspendable Producer. A non-time-critical producer can be suspended. An elementary

example is a typical program producing output destined for a disk. The output will be

buffered, and when the buffer is full, the write call will be delayed in returning control,

waiting for the free buffer space. This delay stems the output production, so the system as

TASK A

TASK Z

TASK B

message

queue

producers
consumer

© Graham G. Thomason 2003-2004 23

a whole is levelled, i.e. the producer is soon balanced in speed to the speed of the

consumer.
2

These two environments require separate state-based modelling, since the second one

involves more states than the first. If a system is implemented with a suspendable producer,

but nothing of interest ever happens when the producer is suspended, except to unsuspend the

producer, then the system may be modelled as if it were the first case. Before approaching the

second case, we will describe the internal semaphoring mechanism.

4.2 Unsuspendable producers
Messages are modelled as events. We require the following features in the state machine

system:

 The availability of library functions to queue and dequeue event names. The functions

might take two parameters: a queue name (= pump in MG-R) and an event name.

Additional functions to test whether the queue is empty or not, and to remove duplicate

entries, may be useful in certain circumstances, but are not needed for the basis.

 The ability to manipulate events:

- to pass them as a parameter to a queue function call

- to receive them in a dequeue function call

- to fire an event received as a parameter.

In manipulating events, two approaches are possible:

1. Implicit event referencing. With this approach, we say that there is no need to have any

special notation to take the name (or address) of an event, nor to dereference it. The

following calls suffice:

queue(alpha), dequeue(evt), fire(evt)

Here, evt is implicitly a reference to an event. It will be identified as such and implicitly

dereferenced, in order to fire the event. The function fire(...) is overloaded to take either

events or references to events.

2. Explicit event referencing. In this case we are more precise about when a quantity is a

an event and when it is some form of reference to an event. The reference could be made

- by taking the name of an event, which might be represented by a string (with scope)

- by taking the address of an event, e.g. &alpha, dereference example *p_alpha

- by using the C++ reference operator (&) which is effectively internally an address-of

operator, but a quantity thing& is type compatible with thing , i.e. with what it

references, not type compatible with &thing (pointer-to-what-is-referenced).

For clarity we use the address-of and dereference convention in the diagrams, so we have

queue(&alpha), dequeue(p_evt), fire(*p_evt)

2
 A refinement to this model prevents thrashing. Thrashing in this case is the rapid alternation of

allocating and releasing a small amount of buffer, thus incurring a high system overhead. Thrashing

can be prevented by only returning to the producer when a fair amount of buffer is available.

24 © Graham G. Thomason 2003-2004

However, we overload fire, so that we can write

fire(p_evt)

Parameters to events

In either case the events and references to events must be parameterizable. Chapter 3

describes how events can be parameterized; an example using queued events is:

queue(&eta(p1,p2+1)),

dequeue(p_evt(q1,q2)),

fire(p_evt(q1,q2))

Parameters could be stored in queued functions

 as expressions to be evaluated at function execution time

 as values evaluated at queuing time.

We opt for evaluation at queuing time. Evaluation at execution time can be engineered by

supplying pointers to data and evaluating the required expressions in the function body, rather

than in the call.

Synchronous versus Asynchronous calls

The technique described below is applicable to synchronous and asynchronous calls, and we

show a case of one of each kind of call being processed. Note that the terms synchronous and

asynchronous are from the server's (i.e. consumer's) perspective (typically representing the

consumer's thread), not with respect to the client's (i.e. producer's) perspective.

© Graham G. Thomason 2003-2004 25

Figure 22. Unsuspendable Producer

system

client

startq[!queue_empty]/

deque_event(p_evt(v1,v2)),

p_evt(v1,v2)

Note: here, p_evt will

be a reference or

pointer to event f

response to other events

generated by the function calls

before

f

f

queued

f

notified

f_return

α/queue(&f(p1,p2)),

optionally startq

event g (synchronous

 function) may be queued here

let event f represent an

asynchronous function

etc.

q

idle

startq

[queue_empty]

fire

 startq

server

(consumer)

on

despatch

of

 f and g

system

server

(consumer) fb fa
φ1

φ3/

$async_return,

::f_return

fc

φ2

f
A

f

gb
ga γ1

γ4/$return,

::g_return

gc

γ2

g

γ3

S
g

startq...

return

as on left hand side

q

idle

startq

[queue_empty]

fire

 startq

26 © Graham G. Thomason 2003-2004

Explanation and notes on unsuspendable producers

1. We employ the method of processing synchronous and asynchronous calls as described in

the preceding chapters, but the initiator of the calls is now the consumer (state q_idle).

There is a synchronous return event that is local to the consumer so that it can be

returned to its idle state. A synchronous function completion will normally be visible as

both a local return to the local caller and as a global notification to the client originator.

This has been implemented by firing two separate events ($return and ::g_return).

The asynchronous notification event is global, (::f_return) so that it will be in scope

for the client whever the client is in the scoping space. All functions need to use unique

names for notification events. By unique names, we mean unique after any transformation

due to component binding. Asynchronous functions may need to issue an additional

return event, which should be called $async_return, to enable a distinction and not

interfere with synchronous calls. This is used when considering nondeterministic

suspension of a consumer later on.

2. Once started, this consumer engine will continue to dequeue and process events until the

queue is empty. This is achieved by having an orbital self-transition on q_idle, with an

upon enter action firing a new start event after each event has been despatched

(whether representing a synchronous or asynchronous function). If the queue is empty, a

non-orbital self-transition takes place and the queue is not re-started.

3. In this example we leave it to clients to explicitly start the queue. An automatic way to

start the queue would be for the queue library routine to start the queue. There may be

situations where fine control is needed of exactly when the queue is started, perhaps

reflecting thread priorities, so it appears best to leave firing the start queue event to the

user.

4. Note that a synchronous function call blocks the consumer until completed.

5. The technique can be generalized for several consumers by allowing for a queue name as

an extra parameter to a queue call.

6. Note that the client, having queued an event, is not blocked in any way, whether the call

will be run synchronously or asynchronously by the consumer.

© Graham G. Thomason 2003-2004 27

4.3 Suspendable producers

 Figure 23, based on [SAD-RTS] course material, illustrates how messages are deposited and

extracted using semaphores. It shows the two reasons why a client might be suspended:

 Lack of buffer space in the queue. In this case, the client will have to wait until the

consumer has consumed one (or more) messages.

 Consumer is busy with buffer manipulation. This is typically a very short operation as

first-in first-out queues can be implemented such that for any length of queue a deposit or

extract process takes a fixed amount of processing which is independent of the length of

the queue. US patent 6,018,612 (Thomason & van Loon) describes such a method (but

this is not part of the invention). In the scheme described there, buffer insertion requires

following one fixed pointer one step, testing a value for zero, and making two

assignments. Buffer extraction requires following one fixed pointer one step, testing for

zero, and making one assignment. Inserting into an empty buffer, and extracting the last

message, will show an affirmative test-for-zero condition and will require minor

variations.

The lack-of-buffer situation can lead to deadlock, e.g. if a message being consumed

synchronously requires an event to progress, but where that event must come from the

blocked client.

The buffer manipulation operation in itself cannot lead to deadlock, as it is just a matter of

time before the critical operation is complete and the semaphore is released. It is probably

often adequate to consider the theoretical buffer-manipulation-busy state as indivisible, so that

it would not need a separate modelled state.

The fact that the consumer may be waiting for a message has been handled by the startq

event. The consumer may also be waiting for the buffer manipulation semaphore to be

released, but again this is just a matter of time, and it may well be acceptable to model it as an

indivisible situation.

There are alternative abstractions
3
 of, and implementations

4
 of the consumer-producer

synchronization problem, but a client wait situation will be a common result.

In our consideration of the situations we simply allow for modelling of one client waiting

state.

3
 E.G. Petri-nets, Ada's Rendez-vous

4
 Semaphore-style synchronization can be implemented in, say, C without any operating support.

References: [Harel] and http://courses.cs.vt.edu/~cs3204/spring2001/cstruble/notes/chapter8.pdf

28 © Graham G. Thomason 2003-2004

Figure 23. Detail of Synchronization using 3 semaphores

Space Available

Semaphores

The operations on a semaphore are wait and signal. A semaphore can be set or free.

Message Available Buffer

Manipulation

TASK A

Repeat

 ...

 Produce message

 ...

 WAIT(Space-Available)

 WAIT(Buffer-Manipulation)

 DEPOSIT(Message)

 SIGNAL(Buffer-Manipulation)

 SIGNAL(Message-Available)

Until forever

Buffer Manipulation

Buffer manipulation

TASK Z

Repeat

 WAIT(Message-Available)

 WAIT(Buffer-Manipulation)

 EXTRACT(Message)

 SIGNAL(Buffer-Manipulation)

 SIGNAL(Space-Available)

 ...

 Consume message

 ...

Until forever

Producer Consumer

Signal

if (tasks are suspended)

 wake-up one task

else

 Semaphore:=free

Wait

if (Semaphore is free)

 Semaphore:=set

else

 Suspend caller

Wait Wait Wait

Deposit

Message

Extract

Message

Signal Signal Signal

Note: Wait is also known as: P / Passeren

 Signal is also known as: Post / V / Vrijlagen (vrijgeven en verlagen = decrelease)

© Graham G. Thomason 2003-2004 29

What needs to be modelled for a suspendable producer?

If a consumer may become suspended, and from a testing perspective the occurrence of this

situation can be engineered in the SUT (System Under Test), then the state-based model will

need to allow for precise control of whether suspension takes place or not. This can be done

by using

 a boolean variable to determine whether suspension takes place

 an extra event, fired externally to simulate a repeated attempt at queuing the event to be

queued.

We call this the deterministic case.

If the SUT cannot be controlled as to whether the consumer is suspended, then a

nondeterministic model may need to be made. This is considered after the deterministic case.

An example of deterministic modelling follows, with q_ok as the boolean variable to control

whether the consumer is suspended, and β as the extra event.

30 © Graham G. Thomason 2003-2004

Figure 24. Deterministic suspension of consumer

system

client

startq[!queue_empty]/

deque_event(p_evt(v1,v2)),

p_evt(v1,v2)

before

f
f

queued

f

notified

f_return

α[q_ok]

/queue(&f),startq

other parts of client

q

idle

startq

[queue_empty]

fire

 startq

server

(consumer)

control of the variable q_ok

here, say

sus

pended

α[!q_ok]

β[!q_ok]

β[q_ok]

/queue(&f),

startq

system

server

(consumer) fb fa
φ1

φ3/

$async_return,

::f_return

fc

φ2

f
A

f(v1,v2)

gb
ga γ1

γ4/$return,

::g_return

gc

γ2

g

γ3

S
g

startq...

return

as on left hand side

q

idle

startq

[queue_empty]

fire

 startq

© Graham G. Thomason 2003-2004 31

Nondeterministic modelling of a suspendable consumer

If a consumer may become suspended, but from a testing perspective it is not possible to

predict whether this will happen, then a nondeterministic approach may be required.

An example is given in the following figure.

Explanation and notes on a nondeterministically suspendable consumer (see figure following)

1. In this figure, function d is some previously activated asynchronous function, and it is

when this completes that waiting clients may be able to queue their messages.

2. Event α is the event that makes the client want to queue a message. Event

::server.async_return is generated outside the client and provides another

opportunity for the client to queue a message after having previously failed. Note the

fork-nondeterminism on events α and ::server.async_return.

3. Asynchronous functions need to fire a $async_return event (as used above) in

addition to their globally unique notification. This is used to effect a retry-to-queue by

clients that failed to queue something the first time. If there are several servers for

different queues, then clients must make sure that their ‘retry’ events are the ones from

the server that will handle the event being queued by the client.

4. This technique could lead to many deadlocked worlds where the client is (unrealistically)

suspended, because there are no actively dispatched functions claiming the buffer space.

However, there will always be one world that corresponds to the observed behaviour of a

correctly-behaving client.

5. An alternative technique for retrying to queue is to periodically retry. This can be very

inefficient, since many retries may be made when there is no chance of success (because

nothing relevant has happened), or conversely a golden opportunity may arise and not be

taken until after a considerable delay. This technique is not further considered in this

report.

32 © Graham G. Thomason 2003-2004

Figure 25. Nondeterministic suspension of a consumer

system

client

startq[!queue_empty]/

deque_event(p_evt(v1,v2)),

p_evt(v1,v2)

before

f
f

queued

f

notified

f_return

α/queue(&f),startq

other parts of client

q

idle

startq

[queue_empty]

fire

 startq

server

(consumer)

sus

pended

α

::server.async_return

::server.async_return

/queue(&f),startq

system

server

(consumer)

fb fa
φ1

φ3/

$async_return,

::f_return

fc

φ2

f
A f

startq...

as on left hand side

q

idle

startq

[queue_empty]

fire

 startq

d1

δ4/
$async_return,

::α_return

d2

d
A

δ2 δ3 δ

© Graham G. Thomason 2003-2004 33

5. Summary of syntax issues

Bound synchronous function calls

Functions will initially be implemented in PROLOG according to the STATECRUNCHER

function API. Future development could be

- to support C more fully

- or to interface to dynamic link libraries, (giving a measure of language independence)

- to interface to COM components (giving better language independence)

Synchronous versus asynchronous function calls

The distinction between synchronous and asynchronous functions is in made on the server-

side, i.e. in the representation of the function model, not the transition into it. However, the

client will need to know whether it is calling an synchronous or asynchronous function

because the client models responding to events are different, the asynchronous case requiring

an explicit intermediate ‘called’ state.

Unbound synchronous function calls

 Implantable state models of the state behaviour are compiled as (freestanding) standard

statecharts with the keywords synchronous statechart

 See below for syntax relevant to synchronous and asynchronous function calls.

Asynchronous function calls

 Implantable state models of the state behaviour are compiled as (freestanding) standard

statecharts with the keywords asynchronous statechart

 There is no need to syntactically identify notifications as such as the pertinent factor is

that they are on a transition to a terminator.

 See below for syntax relevant to synchronous and asynchronous function calls.

Synchronous and asynchronous function calls

 Transitions to function calls are recognized by the event name on the transition matching

the (freestanding) statechart name

 Initially, only one transition on creation will be supported, so no new syntax is needed to

specifically identify such transitions in the function model.

 The end state is recognized by the keyword void.

Parameterized events

 Fired events can be followed by a parameter list, e.g. fire alpha(v1+1,v2)

 Events that trigger transitions can be given a destination parameter list, e.g.
alpha(p1,$$p2)

34 © Graham G. Thomason 2003-2004

 Synchronous and asynchronous functions can be followed by a parameter list after the

statechart name and the child-list , e.g.
 asynchronous statechart sc(child1,child2)(::q1,child1.q2)

Pump engine modelling

For pump engine modelling, the extensions needed to the state-modelling tool

STATECRUNCHER are:

 Library functions to support FIFO (First-In First-Out) queues: an enqueue, a dequeue

a test-queue, and a remove_duplicates routine. Others can be added as the

need arises. Unless they require some new type of parameter, they do not affect the

underlying STATECRUNCHER syntax.

 Pointers to data, so that function parameters can be evaluated at function execution time

rather than function queuing time. This is a matter of extending the operator set and

expression evaluator.

 Pointers-to-events, or references to events. Again, this is a matter of extending the

operator set and expression evaluator. The function fire will be overloaded to accept, and

automatically dereference, pointers to events.

None of these requirements materially impact the STATECRUNCHER language as such.

Models of synchronous and asynchronous functions will normally adhere to the convention

that they provide a global return event (with a unique name) and a local return event

($return and $async_return) respectively.

Models allowing for nondeterministic suspension of a consumer may need to make provision

for retrying-to-queue. They can do this by providing a transition that triggers off

async_return events in the scope of the pump engine that will handle this consumer's

message.

© Graham G. Thomason 2003-2004 35

6. References

STATECRUNCHER documentation and papers by the present author

Main Thesis [StCrMain] The Design and Construction of a State Machine System

that Handles Nondeterminism

Appendices

Appendix 1 [StCrContext] Software Testing in Context

Appendix 2 [StCrSemComp] A Semantic Comparison of STATECRUNCHER and

Process Algebras

Appendix 3 [StCrOutput] A Quick Reference of STATECRUNCHER's Output Format

Appendix 4 [StCrDistArb] Distributed Arbiter Modelling in CCS and

STATECRUNCHER - A Comparison

Appendix 5 [StCrNim] The Game of Nim in Z and STATECRUNCHER

Appendix 6 [StCrBiblRef] Bibliography and References

Related reports

Related report 1 [StCrPrimer] STATECRUNCHER-to-Primer Protocol

Related report 2 [StCrManual] STATECRUNCHER User Manual

Related report 3 [StCrGP4] GP4 - The Generic Prolog Parsing and Prototyping

Package (underlies the STATECRUNCHER compiler)

Related report 4 [StCrParsing] STATECRUNCHER Parsing

Related report 5 [StCrTest] STATECRUNCHER Test Models

Related report 6 [StCrFunMod] State-based Modelling of Functions and Pump Engines

36 © Graham G. Thomason 2003-2004

References

[vAntwerpen] Hans van Antwerpen

 DVP2 Interfaces: Rules and Guidelines

 Philips HVE Software Architecture Board Presentation, Jan. 2001

[CompBinding] G.G. Thomason

 Component binding in Composite Models for State-Based Testing.

 Philips PRL Technical Note 4102, August, 2001

[Harel] D. Harel

 Algorithmics, The Spirit of Computing

 Addison Wesley, 1987. ISBN 0-201-19240-3

[Koala] R. van Ommering, F. van der Linden, J. Kramer, J. Magee

 The Koala Component model for Consumer Electronics Software

 IEEE Computer, March 2000, pp. 78-85.

[KoalaYP] http://pww.natlab.research.philips.com:25147/koala/

[Kunst] P.J. Kunst

 Interface-based programming in C using vtables

 Philips Nat. Lab. Technical Note 2001/245, July 2001

[MGR] R. van Ommering

 The MGR Software Architecture

 http://nlww.natlab.research.philips.com:8080/

 research/ist/people/ommering/docs/1999/99PSC_MGR.pdf

[MGR-Pumps] Rob van Ommering

 On Pumps and Pump Engines

 http://pww.natlab.research.philips.com:25147/mgr/arch/pumps/index.htm

 (password required)

[SAD-RTS] Structured Analysis and Design for Real-Time Systems (Course material)

 Philips Centre for Technical Training

© Graham G. Thomason 2003-2004 37

[Trew] Tim Trew

 Software Component Composition - Still "Plug and Pray?"

 Proceedings of the 6
th

 Philips Software Conference, February, 2001

[vVliet] Hans van Vliet

 Software Engineering Principles and Practice, John Wiley;

 ISBN 0 471 93611 1

